File size: 10,416 Bytes
efeee6d
314f91a
95f85ed
ed33da8
efeee6d
 
 
 
ed33da8
b521fe9
efeee6d
314f91a
b899767
 
efeee6d
943f952
b521fe9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
665a818
 
 
39d6a74
1ffc326
 
b899767
 
efeee6d
 
 
2699972
 
 
 
 
 
 
 
 
58733e4
efeee6d
8c49cb6
705e23f
f4bd2ee
39d6a74
705e23f
 
39d6a74
 
0227006
 
efeee6d
0227006
3c5ea13
 
 
 
 
 
705e23f
 
07a9845
705e23f
 
36e06b6
0d2a785
36e06b6
 
 
 
 
 
9655a7c
36e06b6
9655a7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39d6a74
 
 
9655a7c
149e41e
d313dbd
3c5ea13
 
 
3903d33
3c5ea13
 
 
 
 
 
 
6869211
 
3c5ea13
d16cee2
6869211
 
 
 
8264b6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6869211
d313dbd
 
8c49cb6
d313dbd
 
 
 
 
 
 
 
 
8c49cb6
b323764
d313dbd
 
 
 
 
 
 
 
b323764
d313dbd
 
 
 
8c49cb6
 
d16cee2
58733e4
2a73469
 
217b585
24cd81f
 
 
 
 
1602bff
24cd81f
9833cdb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
from dataclasses import dataclass
from enum import Enum

@dataclass(frozen=True)
class Task:
    benchmark: str
    metric: str
    col_name: str
    type: str
    baseline: float = 0.0


# Select your tasks here
# ---------------------------------------------------
class Tasks(Enum):
    # task_key in the json file, metric_key in the json file, name to display in the leaderboard 
    # task2 = Task("belebele_pol_Latn", "acc,none", "belebele_pol_Latn", "multiple_choice", 0.279)
    task3 = Task("polemo2_in", "exact_match,score-first", "polemo2-in_g", "generate_until", 0.416)
    task4 = Task("polemo2_in_multiple_choice", "acc,none", "polemo2-in_mc", "multiple_choice", 0.416)
    task5 = Task("polemo2_out", "exact_match,score-first", "polemo2-out_g", "generate_until", 0.368)
    task6 = Task("polemo2_out_multiple_choice", "acc,none", "polemo2-out_mc", "multiple_choice", 0.368)
    task7 = Task("polish_8tags_multiple_choice", "acc,none", "8tags_mc", "multiple_choice", 0.143)
    task8 = Task("polish_8tags_regex", "exact_match,score-first", "8tags_g", "generate_until", 0.143)
    task9a = Task("polish_belebele_mc", "acc,none", "belebele_mc", "multiple_choice", 0.279)
    task9 = Task("polish_belebele_regex", "exact_match,score-first", "belebele_g", "generate_until", 0.279)
    task10 = Task("polish_dyk_multiple_choice", "f1,none", "dyk_mc", "multiple_choice", 0.289)
    task11 = Task("polish_dyk_regex", "f1,score-first", "dyk_g", "generate_until", 0.289)
    task12 = Task("polish_ppc_multiple_choice", "acc,none", "ppc_mc", "multiple_choice", 0.419)
    task13 = Task("polish_ppc_regex", "exact_match,score-first", "ppc_g", "generate_until", 0.419)
    task14 = Task("polish_psc_multiple_choice", "f1,none", "psc_mc", "multiple_choice", 0.466)
    task15 = Task("polish_psc_regex", "f1,score-first", "psc_g", "generate_until", 0.466)
    task16 = Task("polish_cbd_multiple_choice", "f1,none", "cbd_mc", "multiple_choice", 0.149)
    task17 = Task("polish_cbd_regex", "f1,score-first", "cbd_g", "generate_until", 0.149)
    task18 = Task("polish_klej_ner_multiple_choice", "acc,none", "klej_ner_mc", "multiple_choice", 0.343)
    task19 = Task("polish_klej_ner_regex", "exact_match,score-first", "klej_ner_g", "generate_until", 0.343)
    task21 = Task("polish_polqa_reranking_multiple_choice", "acc,none", "polqa_reranking_mc", "multiple_choice", 0.5335588952710677) # multiple_choice
    task22 = Task("polish_polqa_open_book", "levenshtein,none", "polqa_open_book_g", "generate_until", 0.0) # generate_until
    task23 = Task("polish_polqa_closed_book", "levenshtein,none", "polqa_closed_book_g", "generate_until", 0.0) # generate_until
    task20 = Task("polish_poleval2018_task3_test_10k", "word_perplexity,none", "poleval2018_task3_test_10k", "other")

NUM_FEWSHOT = 0 # Change with your few shot
# ---------------------------------------------------



# Your leaderboard name
TITLE = """
<div style="display: flex; flex-wrap: wrap; justify-content: space-around;">
    <img src="https://speakleash.org/wp-content/uploads/2023/09/SpeakLeash_logo.svg">
    <div>
        <h1 align="center" id="space-title">Open PL LLM Leaderboard (0-shot and 5-shot)</h1>
        <h2 align="center" id="space-subtitle">Leaderboard was created as part of an open-science project SpeakLeash.org</h2>
    </div>
</div>
"""

# What does your leaderboard evaluate?
INTRODUCTION_TEXT = """
The leaderboard evaluates language models on a set of Polish tasks. The tasks are designed to test the models' ability to understand and generate Polish text. The leaderboard is designed to be a benchmark for the Polish language model community, and to help researchers and practitioners understand the capabilities of different models.

Almost every task has two versions: regex and multiple choice.
* _g suffix means that a model needs to generate an answer (only suitable for instructions-based models)
* _mc suffix means that a model is scored against every possible class (suitable also for base models)

Average columns are normalized against scores by "Baseline (majority class)".
"""

# Which evaluations are you running? how can people reproduce what you have?
LLM_BENCHMARKS_TEXT = f"""
## Do you want to add your model to the leaderboard?

Contact with me: [LinkedIn](https://www.linkedin.com/in/wrobelkrzysztof/)

or join our [Discord SpeakLeash](https://discord.gg/3G9DVM39)

## TODO

* fix long model names
* add inference time
* add more tasks
* use model templates
* fix scrolling on Firefox

## Tasks

| Task                            | Dataset                               | Metric    | Type            |
|---------------------------------|---------------------------------------|-----------|-----------------|
| polemo2_in                      | allegro/klej-polemo2-in               | accuracy  | generate_until  |
| polemo2_in_mc      | allegro/klej-polemo2-in               | accuracy  | multiple_choice |
| polemo2_out                     | allegro/klej-polemo2-out              | accuracy  | generate_until  |
| polemo2_out_mc     | allegro/klej-polemo2-out              | accuracy  | multiple_choice |
| 8tags_mc    | sdadas/8tags                          | accuracy  | multiple_choice |
| 8tags_g              | sdadas/8tags                          | accuracy  | generate_until  |
| belebele_mc           | facebook/belebele                     | accuracy  | multiple_choice  |
| belebele_g           | facebook/belebele                     | accuracy  | generate_until  |
| dyk_mc      | allegro/klej-dyk                      | binary F1 | multiple_choice |
| dyk_g                | allegro/klej-dyk                      | binary F1 | generate_until  |
| ppc_mc      | sdadas/ppc                            | accuracy  | multiple_choice |
| ppc_g                | sdadas/ppc                            | accuracy  | generate_until  |
| psc_mc      | allegro/klej-psc                      | binary F1 | multiple_choice |
| psc_g                | allegro/klej-psc                      | binary F1 | generate_until  |
| cbd_mc      | ptaszynski/PolishCyberbullyingDataset | macro F1  | multiple_choice |
| cbd_g                | ptaszynski/PolishCyberbullyingDataset | macro F1  | generate_until  |
| klej_ner_mc | allegro/klej-nkjp-ner                 | accuracy  | multiple_choice |
| klej_ner_g           | allegro/klej-nkjp-ner                 | accuracy  | generate_until  |
| polqa_reranking_mc | ipipan/polqa   | accuracy | multiple_choice |
| polqa_open_book_g | ipipan/polqa   | levenshtein | generate_until |
| polqa_closed_book_g | ipipan/polqa   | levenshtein | generate_until |
| poleval2018_task3_test_10k | enelpol/poleval2018_task3_test_10k   | word perplexity | other |

## Reproducibility
To reproduce our results, you need to clone the repository:

```
git clone https://github.com/speakleash/lm-evaluation-harness.git -b polish
cd lm-evaluation-harness
pip install -e .
```

and run benchmark for 0-shot and 5-shot:

```
lm_eval --model hf --model_args pretrained=speakleash/Bielik-7B-Instruct-v0.1 --tasks polish --num_fewshot 0 --device cuda:0 --batch_size 16 --verbosity DEBUG --output_path results/ --log_samples
lm_eval --model hf --model_args pretrained=speakleash/Bielik-7B-Instruct-v0.1 --tasks polish --num_fewshot 5 --device cuda:0 --batch_size 16 --verbosity DEBUG --output_path results/ --log_samples
```

## List of Polish models

* speakleash/Bielik-7B-Instruct-v0.1
* speakleash/Bielik-7B-v0.1
* Azurro/APT3-1B-Base
* Azurro/APT3-1B-Instruct-v1
* Voicelab/trurl-2-7b
* Voicelab/trurl-2-13b-academic
* OPI-PG/Qra-1b
* OPI-PG/Qra-7b
* OPI-PG/Qra-13b
* szymonrucinski/Curie-7B-v1
* sdadas/polish-gpt2-xl

### List of multilingual models

* meta-llama/Llama-2-7b-chat-hf
* mistralai/Mistral-7B-Instruct-v0.1
* HuggingFaceH4/zephyr-7b-beta
* HuggingFaceH4/zephyr-7b-alpha
* internlm/internlm2-chat-7b-sft
* internlm/internlm2-chat-7b
* mistralai/Mistral-7B-Instruct-v0.2
* teknium/OpenHermes-2.5-Mistral-7B
* openchat/openchat-3.5-1210
* Nexusflow/Starling-LM-7B-beta
* openchat/openchat-3.5-0106
* berkeley-nest/Starling-LM-7B-alpha
* upstage/SOLAR-10.7B-Instruct-v1.0
* meta-llama/Llama-2-7b-hf
* internlm/internlm2-base-7b
* mistralai/Mistral-7B-v0.1
* internlm/internlm2-7b
* alpindale/Mistral-7B-v0.2-hf
* internlm/internlm2-1_8b



"""

EVALUATION_QUEUE_TEXT = """
## Some good practices before submitting a model

### 1) Make sure you can load your model and tokenizer using AutoClasses:
```python
from transformers import AutoConfig, AutoModel, AutoTokenizer
config = AutoConfig.from_pretrained("your model name", revision=revision)
model = AutoModel.from_pretrained("your model name", revision=revision)
tokenizer = AutoTokenizer.from_pretrained("your model name", revision=revision)
```
If this step fails, follow the error messages to debug your model before submitting it. It's likely your model has been improperly uploaded.

Note: make sure your model is public!
Note: if your model needs `use_remote_code=True`, we do not support this option yet but we are working on adding it, stay posted!

### 2) Convert your model weights to [safetensors](https://huggingface.co/docs/safetensors/index)
It's a new format for storing weights which is safer and faster to load and use. It will also allow us to add the number of parameters of your model to the `Extended Viewer`!

### 3) Make sure your model has an open license!
This is a leaderboard for Open LLMs, and we'd love for as many people as possible to know they can use your model 🤗

### 4) Fill up your model card
When we add extra information about models to the leaderboard, it will be automatically taken from the model card

## In case of model failure
If your model is displayed in the `FAILED` category, its execution stopped.
Make sure you have followed the above steps first.
If everything is done, check you can launch the EleutherAIHarness on your model locally, using the above command without modifications (you can add `--limit` to limit the number of examples per task).
"""

CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
CITATION_BUTTON_TEXT = r"""
@misc{open-pl-llm-leaderboard,
	title        = {Open PL LLM Leaderboard},
	author       = {Wróbel, Krzysztof and {SpeakLeash Team} and {Cyfronet Team}},
	year         = 2024,
	publisher    = {Hugging Face},
	howpublished = "\url{https://huggingface.co/spaces/speakleash/open_pl_llm_leaderboard}"
}
"""