File size: 18,593 Bytes
df66f6e
2a5f9fb
 
df66f6e
b15949c
2a5f9fb
 
 
 
 
 
d2d2329
2a5f9fb
 
d6e3be2
2a5f9fb
b521fe9
2a5f9fb
 
b521fe9
 
 
2a5f9fb
b521fe9
2a5f9fb
9d22eee
b521fe9
 
 
2a5f9fb
918265b
2a5f9fb
d488d58
b521fe9
2a5f9fb
d2d2329
0d2a785
b521fe9
2a5f9fb
 
1f30b67
3dfaf22
2a5f9fb
 
 
943f952
a8630b1
b521fe9
2a5f9fb
 
9d22eee
2a5f9fb
 
 
0d2a785
1be4fc9
2a37ba0
 
 
 
b521fe9
 
 
 
 
ea6148c
2a37ba0
92530b5
45fa708
b521fe9
92530b5
6869211
 
 
 
 
2a5f9fb
 
 
 
 
9d22eee
2a5f9fb
 
 
9d22eee
002172c
2a5f9fb
943f952
e03efff
002172c
3dfaf22
 
 
 
 
2a5f9fb
 
 
 
 
 
91765f5
 
 
 
943f952
b521fe9
91765f5
2a5f9fb
 
 
0d2a785
 
 
 
b521fe9
 
2a5f9fb
 
 
002172c
2a5f9fb
 
 
b521fe9
 
2a5f9fb
3bb301b
0d2a785
b521fe9
 
2a5f9fb
 
ed33da8
b521fe9
ed33da8
b521fe9
ed33da8
d488d58
ed33da8
918265b
b521fe9
ed33da8
 
 
3dfaf22
 
ed33da8
9d22eee
2a5f9fb
 
 
 
 
9d22eee
2a5f9fb
 
 
b1a1395
2a5f9fb
1ffc326
2a5f9fb
 
3dfaf22
ed33da8
 
0d2a785
96fbe7c
ed33da8
b521fe9
ed33da8
96fbe7c
1bea7de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b521fe9
 
845f28e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45d02c6
 
845f28e
 
 
 
 
 
 
 
 
 
45d02c6
 
845f28e
 
 
 
 
 
 
 
 
 
45d02c6
 
845f28e
 
b521fe9
 
845f28e
 
 
 
 
 
 
 
 
 
 
 
45d02c6
 
845f28e
96fbe7c
 
 
 
 
845f28e
 
 
 
 
ed33da8
 
 
 
 
 
 
 
 
 
845f28e
 
 
 
45d02c6
 
845f28e
918265b
 
 
 
 
 
 
845f28e
 
 
 
45d02c6
 
845f28e
 
 
 
 
45d02c6
 
845f28e
 
 
 
 
45d02c6
 
845f28e
3bb301b
d2d2329
3bb301b
 
2a5f9fb
 
0d4d8e0
 
 
 
83a3b43
2a5f9fb
 
 
 
3dfaf22
 
2a5f9fb
3dfaf22
2a5f9fb
 
 
 
 
 
 
 
 
 
 
b521fe9
 
2a5f9fb
 
 
 
 
ed33da8
3dfaf22
 
2a5f9fb
 
 
 
 
 
 
 
 
 
 
 
 
3dfaf22
2a5f9fb
b521fe9
 
2a5f9fb
b521fe9
1f30b67
 
 
 
b521fe9
ed33da8
 
1f30b67
 
 
b521fe9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f30b67
 
2a5f9fb
b521fe9
 
 
2a5f9fb
 
 
b79bef5
b521fe9
 
b1a1395
df66f6e
af30c27
2a5f9fb
 
0d2a785
45fa708
0d2a785
 
 
 
 
 
 
 
 
b521fe9
45fa708
0d2a785
 
 
 
b5aa7e1
 
 
 
0d2a785
45fa708
 
 
 
 
2a5f9fb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
import glob
import json
import math
import os
import re
from dataclasses import dataclass

import dateutil
import numpy as np

from src.display.formatting import make_clickable_model
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType, NShotType
from src.submission.check_validity import is_model_on_hub

NUM_FEWSHOT = 0


@dataclass
class EvalResult:
    eval_name: str  # org_model_precision (uid)
    full_model: str  # org/model (path on hub)
    org: str
    model: str
    revision: str  # commit hash, "" if main
    results: dict
    precision: Precision = Precision.Unknown
    model_type: ModelType = ModelType.Unknown  # Pretrained, fine tuned, ...
    weight_type: WeightType = WeightType.Original  # Original or Adapter
    architecture: str = "Unknown"
    license: str = "?"
    lang: str = "?"
    likes: int = 0
    num_params: int = 0
    date: str = ""  # submission date of request file
    still_on_hub: bool = False
    n_shot: NShotType = NShotType.n0
    org_and_model: str = ""
    start_date: float = 0

    @classmethod
    def init_from_json_file(self, json_filepath, n_shot_num):
        """Inits the result from the specific model result file"""
        with open(json_filepath) as fp:
            data = json.load(fp)

        config = data.get("config")
        n_shot = data.get("n-shot")
        start_date = data.get("date", 0)

        # Precision
        precision = Precision.from_str(config.get("model_dtype"))

        # Get model and org
        org_and_model = config.get("model_name", config.get("model_args", None))
        orig_org_and_model = org_and_model
        SPICHLERZ_ORG = "speakleash/"

        if re.match(r"^pretrained=(.*/(plgkwrobel|plggspkl)/)(models/)?", org_and_model):
            org_and_model = re.sub(r"^pretrained=(.*/(plgkwrobel|plggspkl)/)(models/)?", SPICHLERZ_ORG, org_and_model)

        org_and_model = org_and_model.replace(",dtype=bfloat16", "")
        org_and_model = org_and_model.replace(",dtype=float16", "")

        org_and_model = org_and_model.replace("models/hf_v7_e1", "APT3-1B-Instruct-e1")
        org_and_model = org_and_model.replace("models/hf_v7_e2", "APT3-1B-Instruct-e2")

        org_and_model = re.sub(r"^pretrained=", "", org_and_model)
        org_and_model = org_and_model.replace(",trust_remote_code=True", "")
        org_and_model = re.sub(",prefix_token_id=\d+", "", org_and_model)
        org_and_model = re.sub("/$", "", org_and_model)

        if org_and_model=='speakleash/mistral_7B-v2/spkl-only-e1_333887a5':
            org_and_model='speakleash/Bielik-7B-v0.1'
        elif org_and_model=='speakleash/mistral_7B-v2/spkl-only_sft_v2/e1_base/spkl-only_v10wa_7e6-e2_bbc67e89':
            org_and_model='speakleash/Bielik-7B-Instruct-v0.1'

        org_and_model = org_and_model.split("/", 1)

        if len(org_and_model) == 1:
            org = None
            model = org_and_model[0]
            result_key = f"{model}_{precision.value.name}"
        else:
            org = org_and_model[0]
            model = org_and_model[1]
            result_key = f"{org}_{model}_{precision.value.name}"
        full_model = "/".join(org_and_model)

        still_on_hub, _, model_config = is_model_on_hub(
            full_model.split(',')[0], config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
        )
        architecture = "?"
        if model_config is not None:
            architectures = getattr(model_config, "architectures", None)
            if architectures:
                architecture = ";".join(architectures)

        # Extract results available in this file (some results are split in several files)
        results = {}
        for task in Tasks:
            task = task.value

            task_n_shot_num = n_shot_num
            if 'perplexity' in task.metric: # perplexity is the same for 0-shot and 5-shot and is calculated only with 0-shot
                task_n_shot_num = 0

            # We average all scores of a given metric (not all metrics are present in all files)
            accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if
                             task.benchmark == k and n_shot.get(k, -1) == task_n_shot_num])
            if accs.size == 0 or any([acc is None for acc in accs]):
                continue

            if 'perplexity' in task.metric:
                mean_acc = np.mean(accs)
            else:
                mean_acc = np.mean(accs) * 100.0
            results[task.benchmark] = (mean_acc, start_date)
            # results[task.benchmark] = mean_acc

        return self(
            eval_name=result_key,
            full_model=full_model,
            org=org,
            model=model,
            results=results,
            precision=precision,
            revision=config.get("model_sha", ""),
            still_on_hub=still_on_hub,
            architecture=architecture,
            n_shot=NShotType.from_str(n_shot_num),
            org_and_model=orig_org_and_model,
            start_date=start_date
        )

    def update_with_metadata(self, metadata):
        # print('UPDATE', self.full_model, self.model, self.eval_name)
        try:
            meta = metadata[self.full_model]
            self.model_type = ModelType.from_str(meta.get("type", "?"))
            self.num_params = meta.get("params", 0)
            self.license = meta.get("license", "?")
            self.lang = meta.get("lang", "?")
            # TODO desc name
        except KeyError:
            print(f"Could not find metadata for {self.full_model}")

    def update_with_request_file(self, requests_path):
        """Finds the relevant request file for the current model and updates info with it"""
        return
        request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)

        try:
            with open(request_file, "r") as f:
                request = json.load(f)
            self.model_type = ModelType.from_str(request.get("model_type", ""))
            self.weight_type = WeightType[request.get("weight_type", "Original")]
            self.license = request.get("license", "?")
            self.likes = request.get("likes", 0)
            self.num_params = request.get("params", 0)
            self.date = request.get("submitted_time", "")
        except Exception:
            print(f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}")

    def to_dict(self):
        """Converts the Eval Result to a dict compatible with our dataframe display"""
        g_tasks = [task.value.benchmark for task in Tasks if task.value.type == "generate_until"]
        mc_tasks = [task.value.benchmark for task in Tasks if task.value.type == "multiple_choice"]
        all_tasks = g_tasks + mc_tasks
        all_tasks_wo_polqa = [task for task in all_tasks if 'polqa' not in task]

        baselines = {task.value.benchmark: task.value.baseline*100 for task in Tasks}

        average_old = sum([v for task, v in self.results.items() if v is not None and task in all_tasks_wo_polqa]) / len(all_tasks_wo_polqa)
        # average_g = sum([v for task, v in self.results.items() if v is not None and task in g_tasks]) / len(g_tasks)
        # average_mc = sum([v for task, v in self.results.items() if v is not None and task in mc_tasks]) / len(mc_tasks)
        # print('XXXXXXXXXXXX')
        # print(self.eval_name)
        # print(all_tasks)
        # print(baselines)
        # print(self.results)
        # print('XXXXXXXXXXXX')

        # average = sum([((v if v is not None else 0)-baselines.get(task,0))/(100-baselines.get(task,0))*100 for task, v in self.results.items() if  task in all_tasks]) / len(all_tasks)
        # average_g = sum([((v if v is not None else 0)-baselines.get(task,0))/(100-baselines.get(task,0))*100 for task, v in self.results.items() if  task in g_tasks]) / len(g_tasks)
        # average_mc = sum([((v if v is not None else 0)-baselines.get(task,0))/(100-baselines.get(task,0))*100 for task, v in self.results.items() if  task in mc_tasks]) / len(mc_tasks)

        average = sum([(self.results.get(task,0) - baselines.get(task, 0)) / (100 - baselines.get(task, 0)) * 100 for task in all_tasks]) / len(all_tasks)
        average_g = sum([(self.results.get(task,0) - baselines.get(task, 0)) / (100 - baselines.get(task, 0)) * 100 for task in g_tasks]) / len(g_tasks)
        average_mc = sum([(self.results.get(task,0) - baselines.get(task, 0)) / (100 - baselines.get(task, 0)) * 100 for task in mc_tasks]) / len(mc_tasks)

        data_dict = {}
        # data_dict = {
        #     "eval_name": self.eval_name,  # not a column, just a save name,
        #     AutoEvalColumn.precision.name: self.precision.value.name,
        #     AutoEvalColumn.model_type.name: self.model_type.value.name,
        #     AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
        #     AutoEvalColumn.weight_type.name: self.weight_type.value.name,
        #     AutoEvalColumn.architecture.name: self.architecture,
        #     AutoEvalColumn.model.name: make_clickable_model(self.full_model),
        #     AutoEvalColumn.dummy.name: self.full_model,
        #     AutoEvalColumn.revision.name: self.revision,
        #     AutoEvalColumn.average.name: average,
        #     AutoEvalColumn.license.name: self.license,
        #     AutoEvalColumn.likes.name: self.likes,
        #     AutoEvalColumn.params.name: self.num_params,
        #     AutoEvalColumn.still_on_hub.name: self.still_on_hub,
        # }
        try:
            data_dict["eval_name"] = self.eval_name
        except KeyError:
            print(f"Could not find eval name")

        try:
            data_dict[AutoEvalColumn.precision.name] = self.precision.value.name
        except KeyError:
            print(f"Could not find precision")
        except AttributeError:
            print(f"AttributeError precision")

        try:
            data_dict[AutoEvalColumn.model_type.name] = self.model_type.value.name
        except KeyError:
            print(f"Could not find model type")

        try:
            data_dict[AutoEvalColumn.model_type_symbol.name] = self.model_type.value.symbol
        except KeyError:
            print(f"Could not find model type symbol")
        except AttributeError:
            print(f"AttributeError model_type")

        try:
            data_dict[AutoEvalColumn.weight_type.name] = self.weight_type.value.name
        except KeyError:
            print(f"Could not find weight type")

        try:
            data_dict[AutoEvalColumn.architecture.name] = self.architecture
        except KeyError:
            print(f"Could not find architecture")
        except AttributeError:
            print(f"AttributeError architecture")

        try:
            data_dict[AutoEvalColumn.model.name] = make_clickable_model(
                self.full_model) if self.still_on_hub else self.full_model
        except KeyError:
            print(f"Could not find model")

        try:
            data_dict[AutoEvalColumn.dummy.name] = self.full_model
        except KeyError:
            print(f"Could not find dummy")

        try:
            data_dict[AutoEvalColumn.revision.name] = self.revision
        except KeyError:
            print(f"Could not find revision")
        except AttributeError:
            print(f"AttributeError revision")

        try:
            data_dict[AutoEvalColumn.average_old.name] = average_old
        except KeyError:
            print(f"Could not find average_old")

        try:
            data_dict[AutoEvalColumn.average.name] = average
        except KeyError:
            print(f"Could not find average")

        try:
            data_dict[AutoEvalColumn.average_g.name] = average_g
        except KeyError:
            print(f"Could not find average_g")

        try:
            data_dict[AutoEvalColumn.average_mc.name] = average_mc
        except KeyError:
            print(f"Could not find average_mc")

        try:
            data_dict[AutoEvalColumn.license.name] = self.license
        except KeyError:
            print(f"Could not find license")
        except AttributeError:
            print(f"AttributeError license")

        try:
            data_dict[AutoEvalColumn.lang.name] = self.lang
        except KeyError:
            print(f"Could not find lang")
        except AttributeError:
            print(f"AttributeError lang")

        try:
            data_dict[AutoEvalColumn.likes.name] = self.likes
        except KeyError:
            print(f"Could not find likes")
        except AttributeError:
            print(f"AttributeError likes")

        try:
            data_dict[AutoEvalColumn.params.name] = self.num_params
        except KeyError:
            print(f"Could not find params")
        except AttributeError:
            print(f"AttributeError params")

        try:
            data_dict[AutoEvalColumn.still_on_hub.name] = self.still_on_hub
        except KeyError:
            print(f"Could not find still on hub")
        except AttributeError:
            print(f"AttributeError stillonhub")

        try:
            data_dict[AutoEvalColumn.n_shot.name] = self.n_shot.value.name
        except KeyError:
            print(f"Could not find still on hub")

        for task in Tasks:
            try:
                data_dict[task.value.col_name] = self.results[task.value.benchmark]
            except KeyError:
                print(f"Could not find {task.value.col_name}")
                data_dict[task.value.col_name] = None

        return data_dict


def get_request_file_for_model(requests_path, model_name, precision):
    """Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
    request_files = os.path.join(
        requests_path,
        f"{model_name}_eval_request_*.json",
    )
    request_files = glob.glob(request_files)

    # Select correct request file (precision)
    request_file = ""
    request_files = sorted(request_files, reverse=True)
    for tmp_request_file in request_files:
        with open(tmp_request_file, "r") as f:
            req_content = json.load(f)
            if (
                    req_content["status"] in ["FINISHED"]
                    and req_content["precision"] == precision.split(".")[-1]
            ):
                request_file = tmp_request_file
    return request_file


def get_raw_eval_results(results_path: str, requests_path: str, metadata) -> list[EvalResult]:
    """From the path of the results folder root, extract all needed info for results"""
    model_result_filepaths = []

    for root, _, files in os.walk(results_path):
        # We should only have json files in model results
        if len(files) == 0 or any([not f.endswith(".json") for f in files]):
            continue

        # Sort the files by date
        try:
            files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
        except dateutil.parser._parser.ParserError:
            files = [files[-1]]

        for file in files:
            model_result_filepaths.append(os.path.join(root, file))

    # print('PATHS:', model_result_filepaths)

    eval_results = {}
    for n_shot in [0, 5]:
        for model_result_filepath in model_result_filepaths:
            # Creation of result
            eval_result = EvalResult.init_from_json_file(model_result_filepath, n_shot_num=n_shot)
            eval_result.update_with_request_file(requests_path)
            # update with metadata
            eval_result.update_with_metadata(metadata)

            # Store results of same eval together
            eval_name = f"{eval_result.eval_name}_{n_shot}-shot"
            if eval_name in eval_results.keys():

                for k, (v, start_date) in eval_result.results.items():
                    if v is not None:
                        if k in eval_results[eval_name].results:
                            if start_date > eval_results[eval_name].results[k][1]:
                                print(
                                    f"Overwriting {eval_name}.results {k} {eval_results[eval_name].results[k]} with {v}: {model_result_filepath} {n_shot} {eval_result.start_date}  {eval_results[eval_name].start_date}")
                                eval_results[eval_name].results[k] = (v, start_date)
                            else:
                                print(
                                    f"Skipping {eval_name} {eval_result.start_date} {eval_results[eval_name].start_date}: {model_result_filepath} {n_shot}")
                        else:
                            eval_results[eval_name].results[k] = (v, start_date)
                # eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
                # TODO: log updated

            else:
                eval_results[eval_name] = eval_result

    for k,v in eval_results.items():
        v.results = {k: v for k, (v, start_date) in v.results.items()}

    results = []
    for v in eval_results.values():
        try:
            print(v)
            v.to_dict()  # we test if the dict version is complete
            # if v.results:
            results.append(v)
        except KeyError:  # not all eval values present
            print(f"not all eval values present {v.eval_name} {v.full_model}")
            continue

    missing_results_for_task = {}
    missing_metadata = []
    for v in eval_results.values():
        r = v.to_dict()
        for task in Tasks:
            if r[task.value.col_name] is None:
                task_name = f"{r['n_shot']}|{task.value.benchmark}"
                if task_name in missing_results_for_task:
                    missing_results_for_task[task_name].append(f"{v.full_model}|{v.org_and_model}")
                else:
                    missing_results_for_task[task_name] = [f"{v.full_model}|{v.org_and_model}"]
        if r[AutoEvalColumn.lang.name] is None or r[AutoEvalColumn.lang.name] == "?":
            missing_metadata.append(f"{v.full_model}")

    # print('missing_results_for_task', missing_results_for_task)
    for task, models in missing_results_for_task.items():
        print(f"Missing results for {task} for {len(models)} models")
        # print(" ".join(models))
        for model in models:
            print(f'"{model}"')
        print()

    print(f"Missing metadata for {len(missing_metadata)} models")
    for model in missing_metadata:
        print(model)
    print()

    return results