Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 13,000 Bytes
efeee6d 314f91a 95f85ed ed33da8 efeee6d ed33da8 b521fe9 efeee6d 314f91a b899767 efeee6d 943f952 b521fe9 eb0a895 b521fe9 665a818 eb0a895 c7cf816 75a0c2a 1ffc326 c7cf816 1ffc326 b899767 efeee6d 2699972 58733e4 efeee6d c7cf816 705e23f 7d26098 f4bd2ee 39d6a74 705e23f 39d6a74 26d544d c7cf816 522fdb5 0227006 efeee6d 0227006 3c5ea13 e7ccbf8 3c5ea13 705e23f 07a9845 705e23f 0d2a785 36e06b6 26d544d 36e06b6 9655a7c 36e06b6 9655a7c 39d6a74 9655a7c c7cf816 149e41e d313dbd 3c5ea13 c7cf816 3c5ea13 81f000c 3c5ea13 d16cee2 6869211 8264b6c 6869211 d313dbd 8c49cb6 d313dbd 8c49cb6 b323764 d313dbd b323764 d313dbd 8c49cb6 d16cee2 58733e4 2a73469 217b585 24cd81f 1602bff 24cd81f 9833cdb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
from dataclasses import dataclass
from enum import Enum
@dataclass(frozen=True)
class Task:
benchmark: str
metric: str
col_name: str
type: str
baseline: float = 0.0
# Select your tasks here
# ---------------------------------------------------
class Tasks(Enum):
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
# task2 = Task("belebele_pol_Latn", "acc,none", "belebele_pol_Latn", "multiple_choice", 0.279)
task3 = Task("polemo2_in", "exact_match,score-first", "polemo2-in_g", "generate_until", 0.416)
task4 = Task("polemo2_in_multiple_choice", "acc,none", "polemo2-in_mc", "multiple_choice", 0.416)
task5 = Task("polemo2_out", "exact_match,score-first", "polemo2-out_g", "generate_until", 0.368)
task6 = Task("polemo2_out_multiple_choice", "acc,none", "polemo2-out_mc", "multiple_choice", 0.368)
task7 = Task("polish_8tags_multiple_choice", "acc,none", "8tags_mc", "multiple_choice", 0.143)
task8 = Task("polish_8tags_regex", "exact_match,score-first", "8tags_g", "generate_until", 0.143)
task9a = Task("polish_belebele_mc", "acc,none", "belebele_mc", "multiple_choice", 0.279)
task9 = Task("polish_belebele_regex", "exact_match,score-first", "belebele_g", "generate_until", 0.279)
task10 = Task("polish_dyk_multiple_choice", "f1,none", "dyk_mc", "multiple_choice", 0.289)
task11 = Task("polish_dyk_regex", "f1,score-first", "dyk_g", "generate_until", 0.289)
task12 = Task("polish_ppc_multiple_choice", "acc,none", "ppc_mc", "multiple_choice", 0.419)
task13 = Task("polish_ppc_regex", "exact_match,score-first", "ppc_g", "generate_until", 0.419)
task14 = Task("polish_psc_multiple_choice", "f1,none", "psc_mc", "multiple_choice", 0.466)
task15 = Task("polish_psc_regex", "f1,score-first", "psc_g", "generate_until", 0.466)
task16 = Task("polish_cbd_multiple_choice", "f1,none", "cbd_mc", "multiple_choice", 0.149)
task17 = Task("polish_cbd_regex", "f1,score-first", "cbd_g", "generate_until", 0.149)
task18 = Task("polish_klej_ner_multiple_choice", "acc,none", "klej_ner_mc", "multiple_choice", 0.343)
task19 = Task("polish_klej_ner_regex", "exact_match,score-first", "klej_ner_g", "generate_until", 0.343)
task21 = Task("polish_polqa_reranking_multiple_choice", "acc,none", "polqa_reranking_mc", "multiple_choice", 0.5335588952710677) # multiple_choice
task22 = Task("polish_polqa_open_book", "levenshtein,none", "polqa_open_book_g", "generate_until", 0.0) # generate_until
task23 = Task("polish_polqa_closed_book", "levenshtein,none", "polqa_closed_book_g", "generate_until", 0.0) # generate_until
task24 = Task("polish_poquad_open_book", "levenshtein,none", "poquad_open_book", "generate_until", 0.0)
task25 = Task("polish_eq_bench_first_turn", "first_eqbench,none", "eq_bench_first_turn", "generate_until", 0.0)
task26 = Task("polish_eq_bench", "average_eqbench,none", "eq_bench", "generate_until", 0.0)
task20 = Task("polish_poleval2018_task3_test_10k", "word_perplexity,none", "poleval2018_task3_test_10k", "other")
# task27 = Task("polish_eq_bench", "revised_eqbench,none", "eq_bench_revised", "other", 0.0)
g_tasks = [task.value.benchmark for task in Tasks if task.value.type == "generate_until"]
mc_tasks = [task.value.benchmark for task in Tasks if task.value.type == "multiple_choice"]
rag_tasks = ['polish_polqa_reranking_multiple_choice', 'polish_polqa_open_book', 'polish_poquad_open_book']
all_tasks = g_tasks + mc_tasks
NUM_FEWSHOT = 0 # Change with your few shot
# ---------------------------------------------------
# Your leaderboard name
TITLE = """
<div style="display: flex; flex-wrap: wrap; justify-content: space-around;">
<img src="https://speakleash.org/wp-content/uploads/2023/09/SpeakLeash_logo.svg">
<div>
<h1 align="center" id="space-title">Open PL LLM Leaderboard (0-shot and 5-shot)</h1>
<h2 align="center" id="space-subtitle">Leaderboard was created as part of an open-science project SpeakLeash.org</h2>
</div>
</div>
"""
# What does your leaderboard evaluate?
INTRODUCTION_TEXT = f"""
The leaderboard evaluates language models on a set of Polish tasks. The tasks are designed to test the models' ability to understand and generate Polish text. The leaderboard is designed to be a benchmark for the Polish language model community, and to help researchers and practitioners understand the capabilities of different models.
For now, models are tested without theirs templates.
Almost every task has two versions: regex and multiple choice.
* _g suffix means that a model needs to generate an answer (only suitable for instructions-based models)
* _mc suffix means that a model is scored against every possible class (suitable also for base models)
Average columns are normalized against scores by "Baseline (majority class)".
* `,chat` suffix means that a model is tested using chat templates
* `,chat,multiturn` suffix means that a model is tested using chat templates and fewshot examples are treated as a multi-turn conversation
We gratefully acknowledge Polish high-performance computing infrastructure PLGrid (HPC Centers: ACK Cyfronet AGH) for providing computer facilities and support within computational grant no. PLG/2024/016951.
"""
# Which evaluations are you running? how can people reproduce what you have?
LLM_BENCHMARKS_TEXT = f"""
## Do you want to add your model to the leaderboard?
Contact with me: [LinkedIn](https://www.linkedin.com/in/wrobelkrzysztof/)
or join our [Discord SpeakLeash](https://discord.gg/FfYp4V6y3R)
## TODO
* fix long model names
* add inference time
* add more tasks
* fix scrolling on Firefox
## Tasks
Tasks taken into account while calculating averages:
* Average: {', '.join(all_tasks)}
* Avg g: {', '.join(g_tasks)}
* Avg mc: {', '.join(mc_tasks)}
* Avg RAG: {', '.join(rag_tasks)}
| Task | Dataset | Metric | Type |
|---------------------------------|---------------------------------------|-----------|-----------------|
| polemo2_in | allegro/klej-polemo2-in | accuracy | generate_until |
| polemo2_in_mc | allegro/klej-polemo2-in | accuracy | multiple_choice |
| polemo2_out | allegro/klej-polemo2-out | accuracy | generate_until |
| polemo2_out_mc | allegro/klej-polemo2-out | accuracy | multiple_choice |
| 8tags_mc | sdadas/8tags | accuracy | multiple_choice |
| 8tags_g | sdadas/8tags | accuracy | generate_until |
| belebele_mc | facebook/belebele | accuracy | multiple_choice |
| belebele_g | facebook/belebele | accuracy | generate_until |
| dyk_mc | allegro/klej-dyk | binary F1 | multiple_choice |
| dyk_g | allegro/klej-dyk | binary F1 | generate_until |
| ppc_mc | sdadas/ppc | accuracy | multiple_choice |
| ppc_g | sdadas/ppc | accuracy | generate_until |
| psc_mc | allegro/klej-psc | binary F1 | multiple_choice |
| psc_g | allegro/klej-psc | binary F1 | generate_until |
| cbd_mc | ptaszynski/PolishCyberbullyingDataset | macro F1 | multiple_choice |
| cbd_g | ptaszynski/PolishCyberbullyingDataset | macro F1 | generate_until |
| klej_ner_mc | allegro/klej-nkjp-ner | accuracy | multiple_choice |
| klej_ner_g | allegro/klej-nkjp-ner | accuracy | generate_until |
| polqa_reranking_mc | ipipan/polqa | accuracy | multiple_choice |
| polqa_open_book_g | ipipan/polqa | levenshtein | generate_until |
| polqa_closed_book_g | ipipan/polqa | levenshtein | generate_until |
| poleval2018_task3_test_10k | enelpol/poleval2018_task3_test_10k | word perplexity | other |
| polish_poquad_open_book | enelpol/poleval2018_task3_test_10k | levenshtein | generate_until |
| polish_eq_bench_first_turn | speakleash/EQ-Bench-PL | eq_bench | generate_until |
| polish_eq_bench | speakleash/EQ-Bench-PL | eq_bench | generate_until |
## Reproducibility
To reproduce our results, you need to clone the repository:
```
git clone https://github.com/speakleash/lm-evaluation-harness.git -b polish3
cd lm-evaluation-harness
pip install -e .
```
and run benchmark for 0-shot and 5-shot:
```
lm_eval --model hf --model_args pretrained=speakleash/Bielik-7B-Instruct-v0.1 --tasks polish_generate --num_fewshot 0 --output_path results/ --log_samples
lm_eval --model hf --model_args pretrained=speakleash/Bielik-7B-Instruct-v0.1 --tasks polish_mc --num_fewshot 0 --output_path results/ --log_samples
lm_eval --model hf --model_args pretrained=speakleash/Bielik-7B-Instruct-v0.1 --tasks polish_generate_few --num_fewshot 5 --output_path results/ --log_samples
lm_eval --model hf --model_args pretrained=speakleash/Bielik-7B-Instruct-v0.1 --tasks polish_mc --num_fewshot 5 --output_path results/ --log_samples
```
With chat templates:
```
lm_eval --model hf --model_args pretrained=speakleash/Bielik-7B-Instruct-v0.1 --tasks polish_generate --num_fewshot 0 --output_path results/ --log_samples --apply_chat_template
lm_eval --model hf --model_args pretrained=speakleash/Bielik-7B-Instruct-v0.1 --tasks polish_mc --num_fewshot 0 --output_path results/ --log_samples --apply_chat_template
lm_eval --model hf --model_args pretrained=speakleash/Bielik-7B-Instruct-v0.1 --tasks polish_generate_few --num_fewshot 5 --output_path results/ --log_samples --apply_chat_template
lm_eval --model hf --model_args pretrained=speakleash/Bielik-7B-Instruct-v0.1 --tasks polish_mc --num_fewshot 5 --output_path results/ --log_samples --apply_chat_template
```
## List of Polish models
* speakleash/Bielik-7B-Instruct-v0.1
* speakleash/Bielik-7B-v0.1
* Azurro/APT3-1B-Base
* Azurro/APT3-1B-Instruct-v1
* Voicelab/trurl-2-7b
* Voicelab/trurl-2-13b-academic
* OPI-PG/Qra-1b
* OPI-PG/Qra-7b
* OPI-PG/Qra-13b
* szymonrucinski/Curie-7B-v1
* sdadas/polish-gpt2-xl
### List of multilingual models
* meta-llama/Llama-2-7b-chat-hf
* mistralai/Mistral-7B-Instruct-v0.1
* HuggingFaceH4/zephyr-7b-beta
* HuggingFaceH4/zephyr-7b-alpha
* internlm/internlm2-chat-7b-sft
* internlm/internlm2-chat-7b
* mistralai/Mistral-7B-Instruct-v0.2
* teknium/OpenHermes-2.5-Mistral-7B
* openchat/openchat-3.5-1210
* Nexusflow/Starling-LM-7B-beta
* openchat/openchat-3.5-0106
* berkeley-nest/Starling-LM-7B-alpha
* upstage/SOLAR-10.7B-Instruct-v1.0
* meta-llama/Llama-2-7b-hf
* internlm/internlm2-base-7b
* mistralai/Mistral-7B-v0.1
* internlm/internlm2-7b
* alpindale/Mistral-7B-v0.2-hf
* internlm/internlm2-1_8b
"""
EVALUATION_QUEUE_TEXT = """
## Some good practices before submitting a model
### 1) Make sure you can load your model and tokenizer using AutoClasses:
```python
from transformers import AutoConfig, AutoModel, AutoTokenizer
config = AutoConfig.from_pretrained("your model name", revision=revision)
model = AutoModel.from_pretrained("your model name", revision=revision)
tokenizer = AutoTokenizer.from_pretrained("your model name", revision=revision)
```
If this step fails, follow the error messages to debug your model before submitting it. It's likely your model has been improperly uploaded.
Note: make sure your model is public!
Note: if your model needs `use_remote_code=True`, we do not support this option yet but we are working on adding it, stay posted!
### 2) Convert your model weights to [safetensors](https://huggingface.co/docs/safetensors/index)
It's a new format for storing weights which is safer and faster to load and use. It will also allow us to add the number of parameters of your model to the `Extended Viewer`!
### 3) Make sure your model has an open license!
This is a leaderboard for Open LLMs, and we'd love for as many people as possible to know they can use your model 🤗
### 4) Fill up your model card
When we add extra information about models to the leaderboard, it will be automatically taken from the model card
## In case of model failure
If your model is displayed in the `FAILED` category, its execution stopped.
Make sure you have followed the above steps first.
If everything is done, check you can launch the EleutherAIHarness on your model locally, using the above command without modifications (you can add `--limit` to limit the number of examples per task).
"""
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
CITATION_BUTTON_TEXT = r"""
@misc{open-pl-llm-leaderboard,
title = {Open PL LLM Leaderboard},
author = {Wróbel, Krzysztof and {SpeakLeash Team} and {Cyfronet Team}},
year = 2024,
publisher = {Hugging Face},
howpublished = "\url{https://huggingface.co/spaces/speakleash/open_pl_llm_leaderboard}"
}
"""
|