astra / src /manifold-smoothing.py
suryadev1's picture
v1
6a34fd4
raw
history blame
20.8 kB
import torch
from torch import nn
from torch.nn import functional as F
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
from keras.preprocessing.sequence import pad_sequences
from sklearn.model_selection import train_test_split
from transformers import BertTokenizer, BertConfig
from transformers import AdamW, BertForSequenceClassification, get_linear_schedule_with_warmup
from tqdm import tqdm, trange
import pandas as pd
import io
import numpy as np
import matplotlib.pyplot as plt
from torch.autograd.gradcheck import zero_gradients
import argparse
import random
from utils import *
import os
class softCrossEntropy(nn.Module):
def __init__(self, reduce=True):
super(softCrossEntropy, self).__init__()
self.reduce = reduce
return
def forward(self, inputs, target):
"""
:param inputs: predictions
:param target: target labels in vector form
:return: loss
"""
log_likelihood = -F.log_softmax(inputs, dim=1)
sample_num, class_num = target.shape
if self.reduce:
loss = torch.sum(torch.mul(log_likelihood, target)) / sample_num
else:
loss = torch.sum(torch.mul(log_likelihood, target), 1)
return loss
def one_hot_tensor(y_batch_tensor, num_classes, device):
y_tensor = torch.FloatTensor(y_batch_tensor.size(0), num_classes).fill_(0).to(device)
y_tensor[np.arange(len(y_batch_tensor)), y_batch_tensor] = 1.0
return y_tensor
class on_manifold_samples(object):
def __init__(self, epsilon_x=1e-4, epsilon_y=0.1):
super(on_manifold_samples, self).__init__()
self.epsilon_x = epsilon_x
self.epsilon_y = epsilon_y
def generate(self, input_ids, input_mask, y, model):
model.eval()
with torch.no_grad():
if torch.cuda.device_count() > 1:
embedding = model.module.get_input_embeddings()(input_ids)
else:
embedding = model.get_input_embeddings()(input_ids)
x = embedding.detach()
inv_index = torch.arange(x.size(0) - 1, -1, -1).long()
x_tilde = x[inv_index, :].detach()
y_tilde = y[inv_index, :]
x_init = x.detach() + torch.zeros_like(x).uniform_(-self.epsilon_x, self.epsilon_x)
x_init.requires_grad_()
zero_gradients(x_init)
if x_init.grad is not None:
x_init.grad.data.fill_(0)
fea_b = model(inputs_embeds=x_init, token_type_ids=None, attention_mask=input_mask)[1][-1]
fea_b = torch.mean(fea_b, 1)
with torch.no_grad():
fea_t = model(inputs_embeds=x_tilde, token_type_ids=None, attention_mask=input_mask)[1][-1]
fea_t = torch.mean(fea_t, 1)
Dx = cos_dist(fea_b, fea_t)
model.zero_grad()
if torch.cuda.device_count() > 1:
Dx = Dx.mean()
Dx.backward()
x_prime = x_init.data - self.epsilon_x * torch.sign(x_init.grad.data)
x_prime = torch.min(torch.max(x_prime, embedding - self.epsilon_x), embedding + self.epsilon_x)
y_prime = (1 - self.epsilon_y) * y + self.epsilon_y * y_tilde
model.train()
return x_prime.detach(), y_prime.detach()
class off_manifold_samples(object):
def __init__(self, eps=0.001, rand_init='n'):
super(off_manifold_samples, self).__init__()
self.eps = eps
self.rand_init = rand_init
def generate(self, model, input_ids, input_mask, labels):
model.eval()
ny = labels
with torch.no_grad():
if torch.cuda.device_count() > 1:
embedding = model.module.get_input_embeddings()(input_ids)
else:
embedding = model.get_input_embeddings()(input_ids)
input_embedding = embedding.detach()
#random init the adv samples
if self.rand_init == 'y':
input_embedding = input_embedding + torch.zeros_like(input_embedding).uniform_(-self.eps, self.eps)
input_embedding.requires_grad = True
zero_gradients(input_embedding)
if input_embedding.grad is not None:
input_embedding.grad.data.fill_(0)
cost = model(inputs_embeds=input_embedding, token_type_ids=None, attention_mask=input_mask, labels=ny)[0]
if torch.cuda.device_count() > 1:
cost = cost.mean()
model.zero_grad()
cost.backward()
off_samples = input_embedding + self.eps*torch.sign(input_embedding.grad.data)
off_samples = torch.min(torch.max(off_samples, embedding - self.eps), embedding + self.eps)
model.train()
return off_samples.detach()
class ECE(nn.Module):
def __init__(self, n_bins=15):
"""
n_bins (int): number of confidence interval bins
"""
super(ECE, self).__init__()
bin_boundaries = torch.linspace(0, 1, n_bins + 1)
self.bin_lowers = bin_boundaries[:-1]
self.bin_uppers = bin_boundaries[1:]
def forward(self, logits, labels):
softmaxes = F.softmax(logits, dim=1)
confidences, predictions = torch.max(softmaxes, 1)
accuracies = predictions.eq(labels)
ece = torch.zeros(1, device=logits.device)
for bin_lower, bin_upper in zip(self.bin_lowers, self.bin_uppers):
# Calculated |confidence - accuracy| in each bin
in_bin = confidences.gt(bin_lower.item()) * confidences.le(bin_upper.item())
prop_in_bin = in_bin.float().mean()
if prop_in_bin.item() > 0:
accuracy_in_bin = accuracies[in_bin].float().mean()
avg_confidence_in_bin = confidences[in_bin].mean()
ece += torch.abs(avg_confidence_in_bin - accuracy_in_bin) * prop_in_bin
return ece
# Function to calculate the accuracy of our predictions vs labels
def accurate_nb(preds, labels):
pred_flat = np.argmax(preds, axis=1).flatten()
labels_flat = labels.flatten()
return np.sum(pred_flat == labels_flat)
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--lr", default=5e-5, type=float, help="The initial learning rate for Adam.")
parser.add_argument("--train_batch_size", default=32, type=int, help="Batch size for training.")
parser.add_argument("--eval_batch_size", default=128, type=int, help="Batch size for training.")
parser.add_argument("--epochs", default=10, type=int, help="Number of epochs for training.")
parser.add_argument("--seed", default=0, type=int, help="Number of epochs for training.")
parser.add_argument("--dataset", default='20news-15', type=str, help="dataset")
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
parser.add_argument("--beta_on", default=1., type=float, help="Weight of on manifold reg")
parser.add_argument("--beta_off", default=1., type=float, help="Weight of off manifold reg")
parser.add_argument("--eps_in", default=1e-4, type=float, help="Perturbation size of on-manifold regularizer")
parser.add_argument("--eps_y", default=0.1, type=float, help="Perturbation size of label")
parser.add_argument('--eps_out', default=0.001, type=float, help="Perturbation size of out-of-domain adversarial training")
parser.add_argument('--saved_dataset', type=str, default='n', help='whether save the preprocessed pt file of the dataset')
args = parser.parse_args()
print(args)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
args.device = device
set_seed(args)
ece_criterion = ECE().to(args.device)
soft_ce = softCrossEntropy()
on_manifold = on_manifold_samples(epsilon_x=args.eps_in, epsilon_y=args.eps_y)
off_manifold = off_manifold_samples(eps=args.eps_out)
# load dataset
if args.saved_dataset == 'n':
train_sentences, val_sentences, test_sentences, train_labels, val_labels, test_labels = load_dataset(args.dataset)
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', do_lower_case=True)
train_input_ids = []
val_input_ids = []
test_input_ids = []
if args.dataset == '20news' or args.dataset == '20news-15':
MAX_LEN = 150
else:
MAX_LEN = 256
for sent in train_sentences:
# `encode` will:
# (1) Tokenize the sentence.
# (2) Prepend the `[CLS]` token to the start.
# (3) Append the `[SEP]` token to the end.
# (4) Map tokens to their IDs.
encoded_sent = tokenizer.encode(
sent, # Sentence to encode.
add_special_tokens = True, # Add '[CLS]' and '[SEP]'
# This function also supports truncation and conversion
# to pytorch tensors, but we need to do padding, so we
# can't use these features :( .
max_length = MAX_LEN, # Truncate all sentences.
#return_tensors = 'pt', # Return pytorch tensors.
)
# Add the encoded sentence to the list.
train_input_ids.append(encoded_sent)
for sent in val_sentences:
encoded_sent = tokenizer.encode(
sent,
add_special_tokens = True,
max_length = MAX_LEN,
)
val_input_ids.append(encoded_sent)
for sent in test_sentences:
encoded_sent = tokenizer.encode(
sent,
add_special_tokens = True,
max_length = MAX_LEN,
)
test_input_ids.append(encoded_sent)
# Pad our input tokens
train_input_ids = pad_sequences(train_input_ids, maxlen=MAX_LEN, dtype="long", truncating="post", padding="post")
val_input_ids = pad_sequences(val_input_ids, maxlen=MAX_LEN, dtype="long", truncating="post", padding="post")
test_input_ids = pad_sequences(test_input_ids, maxlen=MAX_LEN, dtype="long", truncating="post", padding="post")
# Create attention masks
train_attention_masks = []
val_attention_masks = []
test_attention_masks = []
# Create a mask of 1s for each token followed by 0s for padding
for seq in train_input_ids:
seq_mask = [float(i>0) for i in seq]
train_attention_masks.append(seq_mask)
for seq in val_input_ids:
seq_mask = [float(i>0) for i in seq]
val_attention_masks.append(seq_mask)
for seq in test_input_ids:
seq_mask = [float(i>0) for i in seq]
test_attention_masks.append(seq_mask)
# Convert all of our data into torch tensors, the required datatype for our model
train_inputs = torch.tensor(train_input_ids)
validation_inputs = torch.tensor(val_input_ids)
train_labels = torch.tensor(train_labels)
validation_labels = torch.tensor(val_labels)
train_masks = torch.tensor(train_attention_masks)
validation_masks = torch.tensor(val_attention_masks)
test_inputs = torch.tensor(test_input_ids)
test_labels = torch.tensor(test_labels)
test_masks = torch.tensor(test_attention_masks)
# Create an iterator of our data with torch DataLoader.
train_data = TensorDataset(train_inputs, train_masks, train_labels)
validation_data = TensorDataset(validation_inputs, validation_masks, validation_labels)
prediction_data = TensorDataset(test_inputs, test_masks, test_labels)
dataset_dir = 'dataset/{}'.format(args.dataset)
if not os.path.exists(dataset_dir):
os.makedirs(dataset_dir)
torch.save(train_data, dataset_dir+'/train.pt')
torch.save(validation_data, dataset_dir+'/val.pt')
torch.save(prediction_data, dataset_dir+'/test.pt')
else:
dataset_dir = 'dataset/{}'.format(args.dataset)
train_data = torch.load(dataset_dir+'/train.pt')
validation_data = torch.load(dataset_dir+'/val.pt')
prediction_data = torch.load(dataset_dir+'/test.pt')
train_sampler = RandomSampler(train_data)
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)
validation_sampler = SequentialSampler(validation_data)
validation_dataloader = DataLoader(validation_data, sampler=validation_sampler, batch_size=args.eval_batch_size)
prediction_sampler = SequentialSampler(prediction_data)
prediction_dataloader = DataLoader(prediction_data, sampler=prediction_sampler, batch_size=args.eval_batch_size)
if args.dataset == '20news':
num_labels = 20
elif args.dataset == '20news-15':
num_labels = 15
elif args.dataset == 'wos-in':
num_labels = 100
elif args.dataset == 'wos':
num_labels = 134
print(num_labels)
model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels= num_labels, output_hidden_states=True)
if torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs!")
# dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
model = nn.DataParallel(model)
model.to(args.device)
#######train model
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'gamma', 'beta']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
'weight_decay_rate': args.weight_decay},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
'weight_decay_rate': 0.0}
]
optimizer = torch.optim.Adam(optimizer_grouped_parameters, lr=args.lr, eps=1e-9)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience=2, factor=0.1)
t_total = len(train_dataloader) * args.epochs
# Store our loss and accuracy for plotting
best_val = -np.inf
# trange is a tqdm wrapper around the normal python range
for epoch in trange(args.epochs, desc="Epoch"):
# Training
# Set our model to training mode (as opposed to evaluation mode)
# Tracking variables
tr_loss1, tr_loss2 = 0, 0
nb_tr_examples, nb_tr_steps = 0, 0
model.train()
# Train the data for one epoch
for step, batch in enumerate(train_dataloader):
# Add batch to GPU
batch = tuple(t.to(args.device) for t in batch)
# Unpack the inputs from our dataloader
b_input_ids, b_input_mask, b_labels = batch
# generate on manifold samples
targets_onehot = one_hot_tensor(b_labels, num_labels, args.device)
on_manifold_x, on_manifold_y = on_manifold.generate(b_input_ids, b_input_mask, targets_onehot, model)
model.train()
# train with on manifold samples
on_manifold_logits = model(token_type_ids=None, attention_mask=b_input_mask, inputs_embeds=on_manifold_x)[0]
loss_on = soft_ce(on_manifold_logits, on_manifold_y)
#generate off manifold samples
off_manifold_x = off_manifold.generate(model, b_input_ids, b_input_mask, b_labels)
model.train()
# train with off manifold samples
off_manifold_logits = model(token_type_ids=None, attention_mask=b_input_mask, inputs_embeds=off_manifold_x)[0]
off_manifold_prob = F.softmax(off_manifold_logits, dim=1)
loss_off = -torch.mean(-torch.sum(off_manifold_prob*torch.log(off_manifold_prob), dim=1))
loss_reg = args.beta_on*loss_on + args.beta_off*loss_off
if torch.cuda.device_count() > 1:
loss_reg = loss_reg.mean()
# Clear out the gradients (by default they accumulate)
optimizer.zero_grad()
loss_reg.backward()
loss_ce = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask, labels=b_labels)[0]
if torch.cuda.device_count() > 1:
loss_ce = loss_ce.mean()
loss_ce.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
# Update parameters and take a step using the computed gradient
optimizer.step()
# Update tracking variables
tr_loss1 += loss_ce.item()
tr_loss2 += loss_reg.item()
nb_tr_examples += b_input_ids.size(0)
nb_tr_steps += 1
print("Train cross entropy loss: {} | reg loss: {}".format(tr_loss1/nb_tr_steps, tr_loss2/nb_tr_steps))
# Validation
# Put model in evaluation mode to evaluate loss on the validation set
model.eval()
# Tracking variables
eval_accurate_nb = 0
nb_eval_examples = 0
# Evaluate data for one epoch
for batch in validation_dataloader:
# Add batch to GPU
batch = tuple(t.to(args.device) for t in batch)
# Unpack the inputs from our dataloader
b_input_ids, b_input_mask, b_labels = batch
# Telling the model not to compute or store gradients, saving memory and speeding up validation
with torch.no_grad():
# Forward pass, calculate logit predictions
logits = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask)[0]
# Move logits and labels to CPU
logits = logits.detach().cpu().numpy()
label_ids = b_labels.to('cpu').numpy()
tmp_eval_nb = accurate_nb(logits, label_ids)
eval_accurate_nb += tmp_eval_nb
nb_eval_examples += label_ids.shape[0]
eval_accuracy = eval_accurate_nb/nb_eval_examples
print("Validation Accuracy: {}".format(eval_accuracy))
scheduler.step(eval_accuracy)
if eval_accuracy > best_val:
dirname = '{}/BERT-mf-{}-{}-{}-{}'.format(args.dataset, args.seed, args.eps_in, args.eps_y, args.eps_out)
output_dir = './model_save/{}'.format(dirname)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
print("Saving model to %s" % output_dir)
model_to_save = model.module if hasattr(model, 'module') else model
model_to_save.save_pretrained(output_dir)
#tokenizer.save_pretrained(output_dir)
best_val = eval_accuracy
# ##### test model on test data
# Put model in evaluation mode
model.eval()
# Tracking variables
predictions , true_labels = [], []
eval_accurate_nb = 0
nb_test_examples = 0
logits_list = []
labels_list = []
# Predict
for batch in prediction_dataloader:
# Add batch to GPU
batch = tuple(t.to(args.device) for t in batch)
# Unpack the inputs from our dataloader
b_input_ids, b_input_mask, b_labels = batch
# Telling the model not to compute or store gradients, saving memory and speeding up prediction
with torch.no_grad():
# Forward pass, calculate logit predictions
logits = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask)[0]
logits_list.append(logits)
labels_list.append(b_labels)
# Move logits and labels to CPU
logits = logits.detach().cpu().numpy()
label_ids = b_labels.to('cpu').numpy()
tmp_eval_nb = accurate_nb(logits, label_ids)
eval_accurate_nb += tmp_eval_nb
nb_test_examples += label_ids.shape[0]
# Store predictions and true labels
predictions.append(logits)
true_labels.append(label_ids)
print("Test Accuracy: {}".format(eval_accurate_nb/nb_test_examples))
logits_ece = torch.cat(logits_list)
labels_ece = torch.cat(labels_list)
ece = ece_criterion(logits_ece, labels_ece).item()
print('ECE on test data: {}'.format(ece))
if __name__ == "__main__":
main()