File size: 12,190 Bytes
86b1a7e
 
 
 
 
d504563
86b1a7e
e46ff5e
bebbcd0
 
e46ff5e
4535a03
 
 
 
 
4bb89c5
86b1a7e
b6c994f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
325137b
e46ff5e
b6c994f
e46ff5e
325137b
e46ff5e
 
 
 
85a3cf8
 
 
e46ff5e
325137b
e46ff5e
b6c994f
e46ff5e
 
 
 
 
85a3cf8
 
 
e46ff5e
325137b
e46ff5e
 
 
 
 
325137b
4535a03
 
 
 
 
 
 
325137b
4535a03
 
 
325137b
4535a03
 
 
325137b
b6c994f
4535a03
 
 
 
 
 
 
b6c994f
 
 
 
 
 
4535a03
 
4bb89c5
4535a03
 
 
325137b
4535a03
 
 
 
 
 
 
 
 
325137b
e46ff5e
325137b
 
 
4535a03
 
325137b
 
 
 
 
 
 
b6c994f
 
 
 
 
 
 
 
 
 
 
 
325137b
 
4535a03
 
325137b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6c994f
 
 
 
325137b
 
b6c994f
 
 
 
325137b
 
 
 
 
 
 
 
 
 
4535a03
6a9d9a1
 
 
 
 
 
4535a03
325137b
 
 
 
 
 
 
 
 
 
 
b6c994f
 
 
 
 
 
4535a03
e46ff5e
 
b6c994f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e46ff5e
4535a03
325137b
 
 
e46ff5e
 
 
 
 
 
325137b
 
85a3cf8
 
 
325137b
 
 
e46ff5e
6a9d9a1
 
 
e46ff5e
 
4535a03
e46ff5e
4535a03
 
e46ff5e
 
 
 
85a3cf8
 
 
4535a03
 
 
 
325137b
 
 
 
4535a03
e46ff5e
4bb89c5
 
 
85a3cf8
 
 
 
e46ff5e
 
4535a03
 
 
 
e46ff5e
 
b6c994f
 
4535a03
 
e46ff5e
 
 
b6c994f
 
 
 
 
 
e46ff5e
325137b
4535a03
325137b
4bb89c5
 
 
 
325137b
 
 
4bb89c5
4535a03
e493629
 
 
4535a03
 
 
b6c994f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4535a03
e46ff5e
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
import torch
from xora.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
from xora.models.transformers.transformer3d import Transformer3DModel
from xora.models.transformers.symmetric_patchifier import SymmetricPatchifier
from xora.schedulers.rf import RectifiedFlowScheduler
from xora.pipelines.pipeline_xora_video import XoraVideoPipeline
from pathlib import Path
from transformers import T5EncoderModel, T5Tokenizer
import safetensors.torch
import json
import argparse
from xora.utils.conditioning_method import ConditioningMethod
import os
import numpy as np
import cv2
from PIL import Image
import random

RECOMMENDED_RESOLUTIONS = [
    (704, 1216, 41),
    (704, 1088, 49),
    (640, 1056, 57),
    (608, 992, 65),
    (608, 896, 73),
    (544, 896, 81),
    (544, 832, 89),
    (512, 800, 97),
    (512, 768, 97),
    (480, 800, 105),
    (480, 736, 113),
    (480, 704, 121),
    (448, 704, 129),
    (448, 672, 137),
    (416, 640, 153),
    (384, 672, 161),
    (384, 640, 169),
    (384, 608, 177),
    (384, 576, 185),
    (352, 608, 193),
    (352, 576, 201),
    (352, 544, 209),
    (352, 512, 225),
    (352, 512, 233),
    (320, 544, 241),
    (320, 512, 249),
    (320, 512, 257),
]


def load_vae(vae_dir):
    vae_ckpt_path = vae_dir / "vae_diffusion_pytorch_model.safetensors"
    vae_config_path = vae_dir / "config.json"
    with open(vae_config_path, "r") as f:
        vae_config = json.load(f)
    vae = CausalVideoAutoencoder.from_config(vae_config)
    vae_state_dict = safetensors.torch.load_file(vae_ckpt_path)
    vae.load_state_dict(vae_state_dict)
    if torch.cuda.is_available():
        vae = vae.cuda()
    return vae.to(torch.bfloat16)


def load_unet(unet_dir):
    unet_ckpt_path = unet_dir / "unet_diffusion_pytorch_model.safetensors"
    unet_config_path = unet_dir / "config.json"
    transformer_config = Transformer3DModel.load_config(unet_config_path)
    transformer = Transformer3DModel.from_config(transformer_config)
    unet_state_dict = safetensors.torch.load_file(unet_ckpt_path)
    transformer.load_state_dict(unet_state_dict, strict=True)
    if torch.cuda.is_available():
        transformer = transformer.cuda()
    return transformer


def load_scheduler(scheduler_dir):
    scheduler_config_path = scheduler_dir / "scheduler_config.json"
    scheduler_config = RectifiedFlowScheduler.load_config(scheduler_config_path)
    return RectifiedFlowScheduler.from_config(scheduler_config)


def center_crop_and_resize(frame, target_height, target_width):
    h, w, _ = frame.shape
    aspect_ratio_target = target_width / target_height
    aspect_ratio_frame = w / h
    if aspect_ratio_frame > aspect_ratio_target:
        new_width = int(h * aspect_ratio_target)
        x_start = (w - new_width) // 2
        frame_cropped = frame[:, x_start : x_start + new_width]
    else:
        new_height = int(w / aspect_ratio_target)
        y_start = (h - new_height) // 2
        frame_cropped = frame[y_start : y_start + new_height, :]
    frame_resized = cv2.resize(frame_cropped, (target_width, target_height))
    return frame_resized


def load_video_to_tensor_with_resize(video_path, target_height, target_width):
    cap = cv2.VideoCapture(video_path)
    frames = []
    while True:
        ret, frame = cap.read()
        if not ret:
            break
        frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        if target_height is not None:
            frame_resized = center_crop_and_resize(
                frame_rgb, target_height, target_width
            )
        else:
            frame_resized = frame_rgb
        frames.append(frame_resized)
    cap.release()
    video_np = (np.array(frames) / 127.5) - 1.0
    video_tensor = torch.tensor(video_np).permute(3, 0, 1, 2).float()
    return video_tensor


def load_image_to_tensor_with_resize(image_path, target_height=512, target_width=768):
    image = Image.open(image_path).convert("RGB")
    image_np = np.array(image)
    frame_resized = center_crop_and_resize(image_np, target_height, target_width)
    frame_tensor = torch.tensor(frame_resized).permute(2, 0, 1).float()
    frame_tensor = (frame_tensor / 127.5) - 1.0
    # Create 5D tensor: (batch_size=1, channels=3, num_frames=1, height, width)
    return frame_tensor.unsqueeze(0).unsqueeze(2)


def main():
    parser = argparse.ArgumentParser(
        description="Load models from separate directories and run the pipeline."
    )

    # Directories
    parser.add_argument(
        "--ckpt_dir",
        type=str,
        required=True,
        help="Path to the directory containing unet, vae, and scheduler subdirectories",
    )
    parser.add_argument(
        "--input_video_path",
        type=str,
        help="Path to the input video file (first frame used)",
    )
    parser.add_argument(
        "--input_image_path", type=str, help="Path to the input image file"
    )
    parser.add_argument(
        "--output_path",
        type=str,
        default=None,
        help="Path to save output video, if None will save in working directory.",
    )
    parser.add_argument("--seed", type=int, default="171198")

    # Pipeline parameters
    parser.add_argument(
        "--num_inference_steps", type=int, default=40, help="Number of inference steps"
    )
    parser.add_argument(
        "--num_images_per_prompt",
        type=int,
        default=1,
        help="Number of images per prompt",
    )
    parser.add_argument(
        "--guidance_scale",
        type=float,
        default=3,
        help="Guidance scale for the pipeline",
    )
    parser.add_argument(
        "--height",
        type=int,
        default=None,
        help="Height of the output video frames. Optional if an input image provided.",
    )
    parser.add_argument(
        "--width",
        type=int,
        default=None,
        help="Width of the output video frames. If None will infer from input image.",
    )
    parser.add_argument(
        "--num_frames",
        type=int,
        default=121,
        help="Number of frames to generate in the output video",
    )
    parser.add_argument(
        "--frame_rate", type=int, default=25, help="Frame rate for the output video"
    )

    parser.add_argument(
        "--bfloat16",
        action="store_true",
        help="Denoise in bfloat16",
    )

    # Prompts
    parser.add_argument(
        "--prompt",
        type=str,
        help="Text prompt to guide generation",
    )
    parser.add_argument(
        "--negative_prompt",
        type=str,
        default="worst quality, inconsistent motion, blurry, jittery, distorted",
        help="Negative prompt for undesired features",
    )
    parser.add_argument(
        "--custom_resolution",
        action="store_true",
        default=False,
        help="Enable custom resolution (not in recommneded resolutions) if specified (default: False)",
    )

    args = parser.parse_args()

    if args.input_image_path is None and args.input_video_path is None:
        assert (
            args.height is not None and args.width is not None
        ), "Must enter height and width for text to image generation."

    # Load media (video or image)
    if args.input_video_path:
        media_items = load_video_to_tensor_with_resize(
            args.input_video_path, args.height, args.width
        ).unsqueeze(0)
    elif args.input_image_path:
        media_items = load_image_to_tensor_with_resize(
            args.input_image_path, args.height, args.width
        )
    else:
        media_items = None

    height = args.height if args.height else media_items.shape[-2]
    width = args.width if args.width else media_items.shape[-1]
    assert height % 32 == 0, f"Height ({height}) should be divisible by 32."
    assert width % 32 == 0, f"Width ({width}) should be divisible by 32."
    assert (
        height,
        width,
        args.num_frames,
    ) in RECOMMENDED_RESOLUTIONS or args.custom_resolution, f"The selected resolution + num frames combination is not supported, results would be suboptimal. Supported (h,w,f) are: {RECOMMENDED_RESOLUTIONS}. Use --custom_resolution to enable working with this resolution."

    # Paths for the separate mode directories
    ckpt_dir = Path(args.ckpt_dir)
    unet_dir = ckpt_dir / "unet"
    vae_dir = ckpt_dir / "vae"
    scheduler_dir = ckpt_dir / "scheduler"

    # Load models
    vae = load_vae(vae_dir)
    unet = load_unet(unet_dir)
    scheduler = load_scheduler(scheduler_dir)
    patchifier = SymmetricPatchifier(patch_size=1)
    text_encoder = T5EncoderModel.from_pretrained(
        "PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="text_encoder"
    )
    if torch.cuda.is_available():
        text_encoder = text_encoder.to("cuda")
    tokenizer = T5Tokenizer.from_pretrained(
        "PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="tokenizer"
    )

    if args.bfloat16 and unet.dtype != torch.bfloat16:
        unet = unet.to(torch.bfloat16)

    # Use submodels for the pipeline
    submodel_dict = {
        "transformer": unet,
        "patchifier": patchifier,
        "text_encoder": text_encoder,
        "tokenizer": tokenizer,
        "scheduler": scheduler,
        "vae": vae,
    }

    pipeline = XoraVideoPipeline(**submodel_dict)
    if torch.cuda.is_available():
        pipeline = pipeline.to("cuda")

    # Prepare input for the pipeline
    sample = {
        "prompt": args.prompt,
        "prompt_attention_mask": None,
        "negative_prompt": args.negative_prompt,
        "negative_prompt_attention_mask": None,
        "media_items": media_items,
    }

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed(args.seed)
        
    generator = torch.Generator(device="cuda" if torch.cuda.is_available() else 'cpu').manual_seed(args.seed)

    images = pipeline(
        num_inference_steps=args.num_inference_steps,
        num_images_per_prompt=args.num_images_per_prompt,
        guidance_scale=args.guidance_scale,
        generator=generator,
        output_type="pt",
        callback_on_step_end=None,
        height=height,
        width=width,
        num_frames=args.num_frames,
        frame_rate=args.frame_rate,
        **sample,
        is_video=True,
        vae_per_channel_normalize=True,
        conditioning_method=(
            ConditioningMethod.FIRST_FRAME
            if media_items is not None
            else ConditioningMethod.UNCONDITIONAL
        ),
        mixed_precision=not args.bfloat16,
    ).images

    # Save output video
    def get_unique_filename(base, ext, dir=".", index_range=1000):
        for i in range(index_range):
            filename = os.path.join(dir, f"{base}_{i}{ext}")
            if not os.path.exists(filename):
                return filename
        raise FileExistsError(
            f"Could not find a unique filename after {index_range} attempts."
        )

    for i in range(images.shape[0]):
        # Gathering from B, C, F, H, W to C, F, H, W and then permuting to F, H, W, C
        video_np = images[i].permute(1, 2, 3, 0).cpu().float().numpy()
        # Unnormalizing images to [0, 255] range
        video_np = (video_np * 255).astype(np.uint8)
        fps = args.frame_rate
        height, width = video_np.shape[1:3]
        if video_np.shape[0] == 1:
            output_filename = (
                args.output_path
                if args.output_path is not None
                else get_unique_filename(f"image_output_{i}", ".png", ".")
            )
            cv2.imwrite(
                output_filename, video_np[0][..., ::-1]
            )  # Save single frame as image
        else:
            output_filename = (
                args.output_path
                if args.output_path is not None
                else get_unique_filename(f"video_output_{i}", ".mp4", ".")
            )

            out = cv2.VideoWriter(
                output_filename, cv2.VideoWriter_fourcc(*"mp4v"), fps, (width, height)
            )

            for frame in video_np[..., ::-1]:
                out.write(frame)
            out.release()


if __name__ == "__main__":
    main()