Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu) | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import logging | |
import random | |
import pyarrow.parquet as pq | |
from io import BytesIO | |
import torch | |
import torchaudio | |
from torch.nn.utils.rnn import pad_sequence | |
import torch.nn.functional as F | |
torchaudio.set_audio_backend('soundfile') | |
AUDIO_FORMAT_SETS = {'flac', 'mp3', 'm4a', 'ogg', 'opus', 'wav', 'wma'} | |
def parquet_opener(data, mode='train', tts_data={}): | |
""" Give url or local file, return file descriptor | |
Inplace operation. | |
Args: | |
data(Iterable[str]): url or local file list | |
Returns: | |
Iterable[{src, stream}] | |
""" | |
for sample in data: | |
assert 'src' in sample | |
url = sample['src'] | |
try: | |
df = pq.read_table(url).to_pandas() | |
for i in range(len(df)): | |
if mode == 'inference' and df.loc[i, 'utt'] not in tts_data: | |
continue | |
sample.update(dict(df.loc[i])) | |
if mode == 'train': | |
# NOTE do not return sample directly, must initialize a new dict | |
yield {**sample} | |
else: | |
for index, text in enumerate(tts_data[df.loc[i, 'utt']]): | |
yield {**sample, 'tts_index': index, 'tts_text': text} | |
except Exception as ex: | |
logging.warning('Failed to open {}, ex info {}'.format(url, ex)) | |
def filter(data, | |
max_length=10240, | |
min_length=10, | |
token_max_length=200, | |
token_min_length=1, | |
min_output_input_ratio=0.0005, | |
max_output_input_ratio=1, | |
mode='train'): | |
""" Filter sample according to feature and label length | |
Inplace operation. | |
Args:: | |
data: Iterable[{key, wav, label, sample_rate}] | |
max_length: drop utterance which is greater than max_length(10ms) | |
min_length: drop utterance which is less than min_length(10ms) | |
token_max_length: drop utterance which is greater than | |
token_max_length, especially when use char unit for | |
english modeling | |
token_min_length: drop utterance which is | |
less than token_max_length | |
min_output_input_ratio: minimal ration of | |
token_length / feats_length(10ms) | |
max_output_input_ratio: maximum ration of | |
token_length / feats_length(10ms) | |
Returns: | |
Iterable[{key, wav, label, sample_rate}] | |
""" | |
for sample in data: | |
sample['speech'], sample['sample_rate'] = torchaudio.load(BytesIO(sample['audio_data'])) | |
del sample['audio_data'] | |
# sample['wav'] is torch.Tensor, we have 100 frames every second | |
num_frames = sample['speech'].size(1) / sample['sample_rate'] * 100 | |
if num_frames < min_length: | |
continue | |
if num_frames > max_length: | |
continue | |
if len(sample['text_token']) < token_min_length: | |
continue | |
if len(sample['text_token']) > token_max_length: | |
continue | |
if len(sample['speech_token']) == 0: | |
continue | |
if num_frames != 0: | |
if len(sample['text_token']) / num_frames < min_output_input_ratio: | |
continue | |
if len(sample['text_token']) / num_frames > max_output_input_ratio: | |
continue | |
yield sample | |
def resample(data, resample_rate=22050, min_sample_rate=16000, mode='train'): | |
""" Resample data. | |
Inplace operation. | |
Args: | |
data: Iterable[{key, wav, label, sample_rate}] | |
resample_rate: target resample rate | |
Returns: | |
Iterable[{key, wav, label, sample_rate}] | |
""" | |
for sample in data: | |
assert 'sample_rate' in sample | |
assert 'speech' in sample | |
sample_rate = sample['sample_rate'] | |
waveform = sample['speech'] | |
if sample_rate != resample_rate: | |
if sample_rate < min_sample_rate: | |
continue | |
sample['sample_rate'] = resample_rate | |
sample['speech'] = torchaudio.transforms.Resample( | |
orig_freq=sample_rate, new_freq=resample_rate)(waveform) | |
max_val = sample['speech'].abs().max() | |
if max_val > 1: | |
sample['speech'] /= max_val | |
yield sample | |
def compute_fbank(data, | |
feat_extractor, | |
mode='train'): | |
""" Extract fbank | |
Args: | |
data: Iterable[{key, wav, label, sample_rate}] | |
Returns: | |
Iterable[{key, feat, label}] | |
""" | |
for sample in data: | |
assert 'sample_rate' in sample | |
assert 'speech' in sample | |
assert 'utt' in sample | |
assert 'text_token' in sample | |
waveform = sample['speech'] | |
mat = feat_extractor(waveform).squeeze(dim=0).transpose(0, 1) | |
sample['speech_feat'] = mat | |
del sample['speech'] | |
yield sample | |
def parse_embedding(data, normalize, mode='train'): | |
""" Parse utt_embedding/spk_embedding | |
Args: | |
data: Iterable[{key, wav, label, sample_rate}] | |
Returns: | |
Iterable[{key, feat, label}] | |
""" | |
for sample in data: | |
sample['utt_embedding'] = torch.tensor(sample['utt_embedding'], dtype=torch.float32) | |
sample['spk_embedding'] = torch.tensor(sample['spk_embedding'], dtype=torch.float32) | |
if normalize: | |
sample['utt_embedding'] = F.normalize(sample['utt_embedding'], dim=0) | |
sample['spk_embedding'] = F.normalize(sample['spk_embedding'], dim=0) | |
yield sample | |
def tokenize(data, get_tokenizer, allowed_special, mode='train'): | |
""" Decode text to chars or BPE | |
Inplace operation | |
Args: | |
data: Iterable[{key, wav, txt, sample_rate}] | |
Returns: | |
Iterable[{key, wav, txt, tokens, label, sample_rate}] | |
""" | |
tokenizer = get_tokenizer() | |
for sample in data: | |
assert 'text' in sample | |
sample['text_token'] = tokenizer.encode(sample['text'], allowed_special=allowed_special) | |
if mode == 'inference': | |
sample['tts_text_token'] = tokenizer.encode(sample['tts_text'], allowed_special=allowed_special) | |
yield sample | |
def shuffle(data, shuffle_size=10000, mode='train'): | |
""" Local shuffle the data | |
Args: | |
data: Iterable[{key, feat, label}] | |
shuffle_size: buffer size for shuffle | |
Returns: | |
Iterable[{key, feat, label}] | |
""" | |
buf = [] | |
for sample in data: | |
buf.append(sample) | |
if len(buf) >= shuffle_size: | |
random.shuffle(buf) | |
for x in buf: | |
yield x | |
buf = [] | |
# The sample left over | |
random.shuffle(buf) | |
for x in buf: | |
yield x | |
def sort(data, sort_size=500, mode='train'): | |
""" Sort the data by feature length. | |
Sort is used after shuffle and before batch, so we can group | |
utts with similar lengths into a batch, and `sort_size` should | |
be less than `shuffle_size` | |
Args: | |
data: Iterable[{key, feat, label}] | |
sort_size: buffer size for sort | |
Returns: | |
Iterable[{key, feat, label}] | |
""" | |
buf = [] | |
for sample in data: | |
buf.append(sample) | |
if len(buf) >= sort_size: | |
buf.sort(key=lambda x: x['speech_feat'].size(0)) | |
for x in buf: | |
yield x | |
buf = [] | |
# The sample left over | |
buf.sort(key=lambda x: x['speech_feat'].size(0)) | |
for x in buf: | |
yield x | |
def static_batch(data, batch_size=16): | |
""" Static batch the data by `batch_size` | |
Args: | |
data: Iterable[{key, feat, label}] | |
batch_size: batch size | |
Returns: | |
Iterable[List[{key, feat, label}]] | |
""" | |
buf = [] | |
for sample in data: | |
buf.append(sample) | |
if len(buf) >= batch_size: | |
yield buf | |
buf = [] | |
if len(buf) > 0: | |
yield buf | |
def dynamic_batch(data, max_frames_in_batch=12000, mode='train'): | |
""" Dynamic batch the data until the total frames in batch | |
reach `max_frames_in_batch` | |
Args: | |
data: Iterable[{key, feat, label}] | |
max_frames_in_batch: max_frames in one batch | |
Returns: | |
Iterable[List[{key, feat, label}]] | |
""" | |
buf = [] | |
longest_frames = 0 | |
for sample in data: | |
assert 'speech_feat' in sample | |
assert isinstance(sample['speech_feat'], torch.Tensor) | |
new_sample_frames = sample['speech_feat'].size(0) | |
longest_frames = max(longest_frames, new_sample_frames) | |
frames_after_padding = longest_frames * (len(buf) + 1) | |
if frames_after_padding > max_frames_in_batch: | |
yield buf | |
buf = [sample] | |
longest_frames = new_sample_frames | |
else: | |
buf.append(sample) | |
if len(buf) > 0: | |
yield buf | |
def batch(data, batch_type='static', batch_size=16, max_frames_in_batch=12000, mode='train'): | |
""" Wrapper for static/dynamic batch | |
""" | |
if mode == 'inference': | |
return static_batch(data, 1) | |
else: | |
if batch_type == 'static': | |
return static_batch(data, batch_size) | |
elif batch_type == 'dynamic': | |
return dynamic_batch(data, max_frames_in_batch) | |
else: | |
logging.fatal('Unsupported batch type {}'.format(batch_type)) | |
def padding(data, use_spk_embedding, mode='train'): | |
""" Padding the data into training data | |
Args: | |
data: Iterable[List[{key, feat, label}]] | |
Returns: | |
Iterable[Tuple(keys, feats, labels, feats lengths, label lengths)] | |
""" | |
for sample in data: | |
assert isinstance(sample, list) | |
speech_feat_len = torch.tensor([x['speech_feat'].size(1) for x in sample], | |
dtype=torch.int32) | |
order = torch.argsort(speech_feat_len, descending=True) | |
utts = [sample[i]['utt'] for i in order] | |
speech_token = [torch.tensor(sample[i]['speech_token']) for i in order] | |
speech_token_len = torch.tensor([i.size(0) for i in speech_token], dtype=torch.int32) | |
speech_token = pad_sequence(speech_token, | |
batch_first=True, | |
padding_value=0) | |
speech_feat = [sample[i]['speech_feat'] for i in order] | |
speech_feat_len = torch.tensor([i.size(0) for i in speech_feat], dtype=torch.int32) | |
speech_feat = pad_sequence(speech_feat, | |
batch_first=True, | |
padding_value=0) | |
text = [sample[i]['text'] for i in order] | |
text_token = [torch.tensor(sample[i]['text_token']) for i in order] | |
text_token_len = torch.tensor([i.size(0) for i in text_token], dtype=torch.int32) | |
text_token = pad_sequence(text_token, batch_first=True, padding_value=0) | |
utt_embedding = torch.stack([sample[i]['utt_embedding'] for i in order], dim=0) | |
spk_embedding = torch.stack([sample[i]['spk_embedding'] for i in order], dim=0) | |
batch = { | |
"utts": utts, | |
"speech_token": speech_token, | |
"speech_token_len": speech_token_len, | |
"speech_feat": speech_feat, | |
"speech_feat_len": speech_feat_len, | |
"text": text, | |
"text_token": text_token, | |
"text_token_len": text_token_len, | |
"utt_embedding": utt_embedding, | |
"spk_embedding": spk_embedding, | |
} | |
if mode == 'inference': | |
tts_text = [sample[i]['tts_text'] for i in order] | |
tts_index = [sample[i]['tts_index'] for i in order] | |
tts_text_token = [torch.tensor(sample[i]['tts_text_token']) for i in order] | |
tts_text_token_len = torch.tensor([i.size(0) for i in tts_text_token], dtype=torch.int32) | |
tts_text_token = pad_sequence(tts_text_token, batch_first=True, padding_value=-1) | |
batch.update({'tts_text': tts_text, | |
'tts_index': tts_index, | |
'tts_text_token': tts_text_token, | |
'tts_text_token_len': tts_text_token_len}) | |
if use_spk_embedding is True: | |
batch["embedding"] = batch["spk_embedding"] | |
else: | |
batch["embedding"] = batch["utt_embedding"] | |
yield batch | |