Spaces:
Running
on
Zero
Running
on
Zero
add vc code
Browse files- cosyvoice/cli/cosyvoice.py +15 -4
- cosyvoice/cli/frontend.py +16 -0
- cosyvoice/flow/flow.py +1 -2
- cosyvoice/llm/llm.py +1 -1
- cosyvoice/tokenizer/tokenizer.py +1 -202
- cosyvoice/utils/common.py +8 -0
- webui.py +1 -7
cosyvoice/cli/cosyvoice.py
CHANGED
@@ -25,6 +25,7 @@ class CosyVoice:
|
|
25 |
|
26 |
def __init__(self, model_dir, load_jit=True, load_onnx=False):
|
27 |
instruct = True if '-Instruct' in model_dir else False
|
|
|
28 |
self.model_dir = model_dir
|
29 |
if not os.path.exists(model_dir):
|
30 |
model_dir = snapshot_download(model_dir)
|
@@ -36,6 +37,7 @@ class CosyVoice:
|
|
36 |
'{}/speech_tokenizer_v1.onnx'.format(model_dir),
|
37 |
'{}/spk2info.pt'.format(model_dir),
|
38 |
instruct,
|
|
|
39 |
configs['allowed_special'])
|
40 |
self.model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'])
|
41 |
self.model.load('{}/llm.pt'.format(model_dir),
|
@@ -58,7 +60,7 @@ class CosyVoice:
|
|
58 |
model_input = self.frontend.frontend_sft(i, spk_id)
|
59 |
start_time = time.time()
|
60 |
logging.info('synthesis text {}'.format(i))
|
61 |
-
for model_output in self.model.
|
62 |
speech_len = model_output['tts_speech'].shape[1] / 22050
|
63 |
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
64 |
yield model_output
|
@@ -70,7 +72,7 @@ class CosyVoice:
|
|
70 |
model_input = self.frontend.frontend_zero_shot(i, prompt_text, prompt_speech_16k)
|
71 |
start_time = time.time()
|
72 |
logging.info('synthesis text {}'.format(i))
|
73 |
-
for model_output in self.model.
|
74 |
speech_len = model_output['tts_speech'].shape[1] / 22050
|
75 |
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
76 |
yield model_output
|
@@ -83,7 +85,7 @@ class CosyVoice:
|
|
83 |
model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k)
|
84 |
start_time = time.time()
|
85 |
logging.info('synthesis text {}'.format(i))
|
86 |
-
for model_output in self.model.
|
87 |
speech_len = model_output['tts_speech'].shape[1] / 22050
|
88 |
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
89 |
yield model_output
|
@@ -97,8 +99,17 @@ class CosyVoice:
|
|
97 |
model_input = self.frontend.frontend_instruct(i, spk_id, instruct_text)
|
98 |
start_time = time.time()
|
99 |
logging.info('synthesis text {}'.format(i))
|
100 |
-
for model_output in self.model.
|
101 |
speech_len = model_output['tts_speech'].shape[1] / 22050
|
102 |
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
103 |
yield model_output
|
104 |
start_time = time.time()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
def __init__(self, model_dir, load_jit=True, load_onnx=False):
|
27 |
instruct = True if '-Instruct' in model_dir else False
|
28 |
+
vc = True if '-VC' in model_dir else False
|
29 |
self.model_dir = model_dir
|
30 |
if not os.path.exists(model_dir):
|
31 |
model_dir = snapshot_download(model_dir)
|
|
|
37 |
'{}/speech_tokenizer_v1.onnx'.format(model_dir),
|
38 |
'{}/spk2info.pt'.format(model_dir),
|
39 |
instruct,
|
40 |
+
vc,
|
41 |
configs['allowed_special'])
|
42 |
self.model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'])
|
43 |
self.model.load('{}/llm.pt'.format(model_dir),
|
|
|
60 |
model_input = self.frontend.frontend_sft(i, spk_id)
|
61 |
start_time = time.time()
|
62 |
logging.info('synthesis text {}'.format(i))
|
63 |
+
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
64 |
speech_len = model_output['tts_speech'].shape[1] / 22050
|
65 |
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
66 |
yield model_output
|
|
|
72 |
model_input = self.frontend.frontend_zero_shot(i, prompt_text, prompt_speech_16k)
|
73 |
start_time = time.time()
|
74 |
logging.info('synthesis text {}'.format(i))
|
75 |
+
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
76 |
speech_len = model_output['tts_speech'].shape[1] / 22050
|
77 |
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
78 |
yield model_output
|
|
|
85 |
model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k)
|
86 |
start_time = time.time()
|
87 |
logging.info('synthesis text {}'.format(i))
|
88 |
+
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
89 |
speech_len = model_output['tts_speech'].shape[1] / 22050
|
90 |
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
91 |
yield model_output
|
|
|
99 |
model_input = self.frontend.frontend_instruct(i, spk_id, instruct_text)
|
100 |
start_time = time.time()
|
101 |
logging.info('synthesis text {}'.format(i))
|
102 |
+
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
103 |
speech_len = model_output['tts_speech'].shape[1] / 22050
|
104 |
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
105 |
yield model_output
|
106 |
start_time = time.time()
|
107 |
+
|
108 |
+
def inference_vc(self, source_speech_16k, prompt_speech_16k, stream=False, speed=1.0):
|
109 |
+
model_input = self.frontend.frontend_vc(source_speech_16k, prompt_speech_16k)
|
110 |
+
start_time = time.time()
|
111 |
+
for model_output in self.model.vc(**model_input, stream=stream, speed=speed):
|
112 |
+
speech_len = model_output['tts_speech'].shape[1] / 22050
|
113 |
+
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
114 |
+
yield model_output
|
115 |
+
start_time = time.time()
|
cosyvoice/cli/frontend.py
CHANGED
@@ -42,6 +42,7 @@ class CosyVoiceFrontEnd:
|
|
42 |
speech_tokenizer_model: str,
|
43 |
spk2info: str = '',
|
44 |
instruct: bool = False,
|
|
|
45 |
allowed_special: str = 'all'):
|
46 |
self.tokenizer = get_tokenizer()
|
47 |
self.feat_extractor = feat_extractor
|
@@ -55,7 +56,10 @@ class CosyVoiceFrontEnd:
|
|
55 |
"CPUExecutionProvider"])
|
56 |
if os.path.exists(spk2info):
|
57 |
self.spk2info = torch.load(spk2info, map_location=self.device)
|
|
|
|
|
58 |
self.instruct = instruct
|
|
|
59 |
self.allowed_special = allowed_special
|
60 |
self.inflect_parser = inflect.engine()
|
61 |
self.use_ttsfrd = use_ttsfrd
|
@@ -172,3 +176,15 @@ class CosyVoiceFrontEnd:
|
|
172 |
model_input['prompt_text'] = instruct_text_token
|
173 |
model_input['prompt_text_len'] = instruct_text_token_len
|
174 |
return model_input
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
speech_tokenizer_model: str,
|
43 |
spk2info: str = '',
|
44 |
instruct: bool = False,
|
45 |
+
vc: bool = False,
|
46 |
allowed_special: str = 'all'):
|
47 |
self.tokenizer = get_tokenizer()
|
48 |
self.feat_extractor = feat_extractor
|
|
|
56 |
"CPUExecutionProvider"])
|
57 |
if os.path.exists(spk2info):
|
58 |
self.spk2info = torch.load(spk2info, map_location=self.device)
|
59 |
+
else:
|
60 |
+
self.spk2info = {}
|
61 |
self.instruct = instruct
|
62 |
+
self.vc = vc
|
63 |
self.allowed_special = allowed_special
|
64 |
self.inflect_parser = inflect.engine()
|
65 |
self.use_ttsfrd = use_ttsfrd
|
|
|
176 |
model_input['prompt_text'] = instruct_text_token
|
177 |
model_input['prompt_text_len'] = instruct_text_token_len
|
178 |
return model_input
|
179 |
+
|
180 |
+
def frontend_vc(self, source_speech_16k, prompt_speech_16k):
|
181 |
+
prompt_speech_token, prompt_speech_token_len = self._extract_speech_token(prompt_speech_16k)
|
182 |
+
prompt_speech_22050 = torchaudio.transforms.Resample(orig_freq=16000, new_freq=22050)(prompt_speech_16k)
|
183 |
+
prompt_speech_feat, prompt_speech_feat_len = self._extract_speech_feat(prompt_speech_22050)
|
184 |
+
embedding = self._extract_spk_embedding(prompt_speech_16k)
|
185 |
+
source_speech_token, source_speech_token_len = self._extract_speech_token(source_speech_16k)
|
186 |
+
model_input = {'source_speech_token': source_speech_token, 'source_speech_token_len': source_speech_token_len,
|
187 |
+
'flow_prompt_speech_token': prompt_speech_token, 'flow_prompt_speech_token_len': prompt_speech_token_len,
|
188 |
+
'prompt_speech_feat': prompt_speech_feat, 'prompt_speech_feat_len': prompt_speech_feat_len,
|
189 |
+
'flow_embedding': embedding}
|
190 |
+
return model_input
|
cosyvoice/flow/flow.py
CHANGED
@@ -124,7 +124,7 @@ class MaskedDiffWithXvec(torch.nn.Module):
|
|
124 |
# text encode
|
125 |
h, h_lengths = self.encoder(token, token_len)
|
126 |
h = self.encoder_proj(h)
|
127 |
-
mel_len1, mel_len2 = prompt_feat.shape[1], int(token_len2 /
|
128 |
h, h_lengths = self.length_regulator.inference(h[:, :token_len1], h[:, token_len1:], mel_len1, mel_len2)
|
129 |
|
130 |
# get conditions
|
@@ -132,7 +132,6 @@ class MaskedDiffWithXvec(torch.nn.Module):
|
|
132 |
conds[:, :mel_len1] = prompt_feat
|
133 |
conds = conds.transpose(1, 2)
|
134 |
|
135 |
-
# mask = (~make_pad_mask(feat_len)).to(h)
|
136 |
mask = (~make_pad_mask(torch.tensor([mel_len1 + mel_len2]))).to(h)
|
137 |
feat = self.decoder(
|
138 |
mu=h.transpose(1, 2).contiguous(),
|
|
|
124 |
# text encode
|
125 |
h, h_lengths = self.encoder(token, token_len)
|
126 |
h = self.encoder_proj(h)
|
127 |
+
mel_len1, mel_len2 = prompt_feat.shape[1], int(token_len2 / self.input_frame_rate * 22050 / 256)
|
128 |
h, h_lengths = self.length_regulator.inference(h[:, :token_len1], h[:, token_len1:], mel_len1, mel_len2)
|
129 |
|
130 |
# get conditions
|
|
|
132 |
conds[:, :mel_len1] = prompt_feat
|
133 |
conds = conds.transpose(1, 2)
|
134 |
|
|
|
135 |
mask = (~make_pad_mask(torch.tensor([mel_len1 + mel_len2]))).to(h)
|
136 |
feat = self.decoder(
|
137 |
mu=h.transpose(1, 2).contiguous(),
|
cosyvoice/llm/llm.py
CHANGED
@@ -206,7 +206,7 @@ class TransformerLM(torch.nn.Module):
|
|
206 |
if top_ids == self.speech_token_size:
|
207 |
break
|
208 |
# in stream mode, yield token one by one
|
209 |
-
yield
|
210 |
out_tokens.append(top_ids)
|
211 |
offset += lm_input.size(1)
|
212 |
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
|
|
|
206 |
if top_ids == self.speech_token_size:
|
207 |
break
|
208 |
# in stream mode, yield token one by one
|
209 |
+
yield top_ids
|
210 |
out_tokens.append(top_ids)
|
211 |
offset += lm_input.size(1)
|
212 |
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
|
cosyvoice/tokenizer/tokenizer.py
CHANGED
@@ -4,6 +4,7 @@ import string
|
|
4 |
from dataclasses import dataclass, field
|
5 |
from functools import cached_property, lru_cache
|
6 |
from typing import Dict, List, Optional, Tuple
|
|
|
7 |
|
8 |
import tiktoken
|
9 |
|
@@ -165,208 +166,6 @@ TTS_Vocal_Token = {
|
|
165 |
}
|
166 |
|
167 |
|
168 |
-
@dataclass
|
169 |
-
class Tokenizer:
|
170 |
-
"""A thin wrapper around `tiktoken` providing quick access to special tokens"""
|
171 |
-
|
172 |
-
encoding: tiktoken.Encoding
|
173 |
-
num_languages: int
|
174 |
-
language: Optional[str] = None
|
175 |
-
task: Optional[str] = None
|
176 |
-
sot_sequence: Tuple[int] = ()
|
177 |
-
special_tokens: Dict[str, int] = field(default_factory=dict)
|
178 |
-
|
179 |
-
def __post_init__(self):
|
180 |
-
for special in self.encoding.special_tokens_set:
|
181 |
-
special_token = self.encoding.encode_single_token(special)
|
182 |
-
self.special_tokens[special] = special_token
|
183 |
-
|
184 |
-
sot: int = self.special_tokens["<|startoftranscript|>"]
|
185 |
-
translate: int = self.special_tokens["<|translate|>"]
|
186 |
-
transcribe: int = self.special_tokens["<|transcribe|>"]
|
187 |
-
|
188 |
-
langs = tuple(LANGUAGES.keys())[: self.num_languages]
|
189 |
-
sot_sequence = [sot]
|
190 |
-
if self.language is not None:
|
191 |
-
sot_sequence.append(sot + 1 + langs.index(self.language))
|
192 |
-
if self.task is not None:
|
193 |
-
task_token: int = transcribe if self.task == "transcribe" else translate
|
194 |
-
sot_sequence.append(task_token)
|
195 |
-
|
196 |
-
self.sot_sequence = tuple(sot_sequence)
|
197 |
-
|
198 |
-
def encode(self, text, **kwargs):
|
199 |
-
return self.encoding.encode(text, **kwargs)
|
200 |
-
|
201 |
-
def decode(self, token_ids: List[int], **kwargs) -> str:
|
202 |
-
token_ids = [t for t in token_ids if t < self.timestamp_begin]
|
203 |
-
return self.encoding.decode(token_ids, **kwargs)
|
204 |
-
|
205 |
-
def decode_with_timestamps(self, token_ids: List[int], **kwargs) -> str:
|
206 |
-
"""
|
207 |
-
Timestamp tokens are above other special tokens' id range and are ignored by `decode()`.
|
208 |
-
This method decodes given tokens with timestamps tokens annotated, e.g. "<|1.08|>".
|
209 |
-
"""
|
210 |
-
return self.encoding.decode(token_ids, **kwargs)
|
211 |
-
|
212 |
-
def get_vocab_size(self) -> int:
|
213 |
-
return self.encoding.n_vocab
|
214 |
-
|
215 |
-
@cached_property
|
216 |
-
def eot(self) -> int:
|
217 |
-
return self.encoding.eot_token
|
218 |
-
|
219 |
-
@cached_property
|
220 |
-
def transcribe(self) -> int:
|
221 |
-
return self.special_tokens["<|transcribe|>"]
|
222 |
-
|
223 |
-
@cached_property
|
224 |
-
def translate(self) -> int:
|
225 |
-
return self.special_tokens["<|translate|>"]
|
226 |
-
|
227 |
-
@cached_property
|
228 |
-
def sot(self) -> int:
|
229 |
-
return self.special_tokens["<|startoftranscript|>"]
|
230 |
-
|
231 |
-
@cached_property
|
232 |
-
def sot_lm(self) -> int:
|
233 |
-
return self.special_tokens["<|startoflm|>"]
|
234 |
-
|
235 |
-
@cached_property
|
236 |
-
def sot_prev(self) -> int:
|
237 |
-
return self.special_tokens["<|startofprev|>"]
|
238 |
-
|
239 |
-
@cached_property
|
240 |
-
def no_speech(self) -> int:
|
241 |
-
return self.special_tokens["<|nospeech|>"]
|
242 |
-
|
243 |
-
@cached_property
|
244 |
-
def no_timestamps(self) -> int:
|
245 |
-
return self.special_tokens["<|notimestamps|>"]
|
246 |
-
|
247 |
-
@cached_property
|
248 |
-
def timestamp_begin(self) -> int:
|
249 |
-
return self.special_tokens["<|0.00|>"]
|
250 |
-
|
251 |
-
@cached_property
|
252 |
-
def language_token(self) -> int:
|
253 |
-
"""Returns the token id corresponding to the value of the `language` field"""
|
254 |
-
if self.language is None:
|
255 |
-
raise ValueError("This tokenizer does not have language token configured")
|
256 |
-
|
257 |
-
return self.to_language_token(self.language)
|
258 |
-
|
259 |
-
def to_language_token(self, language):
|
260 |
-
if token := self.special_tokens.get(f"<|{language}|>", None):
|
261 |
-
return token
|
262 |
-
|
263 |
-
raise KeyError(f"Language {language} not found in tokenizer.")
|
264 |
-
|
265 |
-
@cached_property
|
266 |
-
def all_language_tokens(self) -> Tuple[int]:
|
267 |
-
result = []
|
268 |
-
for token, token_id in self.special_tokens.items():
|
269 |
-
if token.strip("<|>") in LANGUAGES:
|
270 |
-
result.append(token_id)
|
271 |
-
return tuple(result)[: self.num_languages]
|
272 |
-
|
273 |
-
@cached_property
|
274 |
-
def all_language_codes(self) -> Tuple[str]:
|
275 |
-
return tuple(self.decode([_l]).strip("<|>") for _l in self.all_language_tokens)
|
276 |
-
|
277 |
-
@cached_property
|
278 |
-
def sot_sequence_including_notimestamps(self) -> Tuple[int]:
|
279 |
-
return tuple(list(self.sot_sequence) + [self.no_timestamps])
|
280 |
-
|
281 |
-
@cached_property
|
282 |
-
def non_speech_tokens(self) -> Tuple[int]:
|
283 |
-
"""
|
284 |
-
Returns the list of tokens to suppress in order to avoid any speaker tags or non-speech
|
285 |
-
annotations, to prevent sampling texts that are not actually spoken in the audio, e.g.
|
286 |
-
|
287 |
-
- ♪♪♪
|
288 |
-
- ( SPEAKING FOREIGN LANGUAGE )
|
289 |
-
- [DAVID] Hey there,
|
290 |
-
|
291 |
-
keeping basic punctuations like commas, periods, question marks, exclamation points, etc.
|
292 |
-
"""
|
293 |
-
symbols = list('"#()*+/:;<=>@[\\]^_`{|}~「」『』')
|
294 |
-
symbols += (
|
295 |
-
"<< >> <<< >>> -- --- -( -[ (' (\" (( )) ((( ))) [[ ]] {{ }} ♪♪ ♪♪♪".split()
|
296 |
-
)
|
297 |
-
|
298 |
-
# symbols that may be a single token or multiple tokens depending on the tokenizer.
|
299 |
-
# In case they're multiple tokens, suppress the first token, which is safe because:
|
300 |
-
# These are between U+2640 and U+267F miscellaneous symbols that are okay to suppress
|
301 |
-
# in generations, and in the 3-byte UTF-8 representation they share the first two bytes.
|
302 |
-
miscellaneous = set("♩♪♫♬♭♮♯")
|
303 |
-
assert all(0x2640 <= ord(c) <= 0x267F for c in miscellaneous)
|
304 |
-
|
305 |
-
# allow hyphens "-" and single quotes "'" between words, but not at the beginning of a word
|
306 |
-
result = {self.encoding.encode(" -")[0], self.encoding.encode(" '")[0]}
|
307 |
-
for symbol in symbols + list(miscellaneous):
|
308 |
-
for tokens in [
|
309 |
-
self.encoding.encode(symbol),
|
310 |
-
self.encoding.encode(" " + symbol),
|
311 |
-
]:
|
312 |
-
if len(tokens) == 1 or symbol in miscellaneous:
|
313 |
-
result.add(tokens[0])
|
314 |
-
|
315 |
-
return tuple(sorted(result))
|
316 |
-
|
317 |
-
def split_to_word_tokens(self, tokens: List[int]):
|
318 |
-
if self.language in {"zh", "ja", "th", "lo", "my", "yue"}:
|
319 |
-
# These languages don't typically use spaces, so it is difficult to split words
|
320 |
-
# without morpheme analysis. Here, we instead split words at any
|
321 |
-
# position where the tokens are decoded as valid unicode points
|
322 |
-
return self.split_tokens_on_unicode(tokens)
|
323 |
-
|
324 |
-
return self.split_tokens_on_spaces(tokens)
|
325 |
-
|
326 |
-
def split_tokens_on_unicode(self, tokens: List[int]):
|
327 |
-
decoded_full = self.decode_with_timestamps(tokens)
|
328 |
-
replacement_char = "\ufffd"
|
329 |
-
|
330 |
-
words = []
|
331 |
-
word_tokens = []
|
332 |
-
current_tokens = []
|
333 |
-
unicode_offset = 0
|
334 |
-
|
335 |
-
for token in tokens:
|
336 |
-
current_tokens.append(token)
|
337 |
-
decoded = self.decode_with_timestamps(current_tokens)
|
338 |
-
|
339 |
-
if (
|
340 |
-
replacement_char not in decoded
|
341 |
-
or decoded_full[unicode_offset + decoded.index(replacement_char)]
|
342 |
-
== replacement_char
|
343 |
-
):
|
344 |
-
words.append(decoded)
|
345 |
-
word_tokens.append(current_tokens)
|
346 |
-
current_tokens = []
|
347 |
-
unicode_offset += len(decoded)
|
348 |
-
|
349 |
-
return words, word_tokens
|
350 |
-
|
351 |
-
def split_tokens_on_spaces(self, tokens: List[int]):
|
352 |
-
subwords, subword_tokens_list = self.split_tokens_on_unicode(tokens)
|
353 |
-
words = []
|
354 |
-
word_tokens = []
|
355 |
-
|
356 |
-
for subword, subword_tokens in zip(subwords, subword_tokens_list):
|
357 |
-
special = subword_tokens[0] >= self.eot
|
358 |
-
with_space = subword.startswith(" ")
|
359 |
-
punctuation = subword.strip() in string.punctuation
|
360 |
-
if special or with_space or punctuation or len(words) == 0:
|
361 |
-
words.append(subword)
|
362 |
-
word_tokens.append(subword_tokens)
|
363 |
-
else:
|
364 |
-
words[-1] = words[-1] + subword
|
365 |
-
word_tokens[-1].extend(subword_tokens)
|
366 |
-
|
367 |
-
return words, word_tokens
|
368 |
-
|
369 |
-
|
370 |
@lru_cache(maxsize=None)
|
371 |
def get_encoding(name: str = "gpt2", num_languages: int = 99):
|
372 |
vocab_path = os.path.join(os.path.dirname(__file__), "assets", f"{name}.tiktoken")
|
|
|
4 |
from dataclasses import dataclass, field
|
5 |
from functools import cached_property, lru_cache
|
6 |
from typing import Dict, List, Optional, Tuple
|
7 |
+
from whisper.tokenizer import Tokenizer
|
8 |
|
9 |
import tiktoken
|
10 |
|
|
|
166 |
}
|
167 |
|
168 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
@lru_cache(maxsize=None)
|
170 |
def get_encoding(name: str = "gpt2", num_languages: int = 99):
|
171 |
vocab_path = os.path.join(os.path.dirname(__file__), "assets", f"{name}.tiktoken")
|
cosyvoice/utils/common.py
CHANGED
@@ -15,8 +15,10 @@
|
|
15 |
# Modified from ESPnet(https://github.com/espnet/espnet)
|
16 |
"""Unility functions for Transformer."""
|
17 |
|
|
|
18 |
from typing import List
|
19 |
|
|
|
20 |
import torch
|
21 |
|
22 |
IGNORE_ID = -1
|
@@ -142,3 +144,9 @@ def fade_in_out(fade_in_mel, fade_out_mel, window):
|
|
142 |
fade_in_mel[..., :mel_overlap_len] = fade_in_mel[..., :mel_overlap_len] * window[:mel_overlap_len] + \
|
143 |
fade_out_mel[..., -mel_overlap_len:] * window[mel_overlap_len:]
|
144 |
return fade_in_mel.to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
# Modified from ESPnet(https://github.com/espnet/espnet)
|
16 |
"""Unility functions for Transformer."""
|
17 |
|
18 |
+
import random
|
19 |
from typing import List
|
20 |
|
21 |
+
import numpy as np
|
22 |
import torch
|
23 |
|
24 |
IGNORE_ID = -1
|
|
|
144 |
fade_in_mel[..., :mel_overlap_len] = fade_in_mel[..., :mel_overlap_len] * window[:mel_overlap_len] + \
|
145 |
fade_out_mel[..., -mel_overlap_len:] * window[mel_overlap_len:]
|
146 |
return fade_in_mel.to(device)
|
147 |
+
|
148 |
+
def set_all_random_seed(seed):
|
149 |
+
random.seed(seed)
|
150 |
+
np.random.seed(seed)
|
151 |
+
torch.manual_seed(seed)
|
152 |
+
torch.cuda.manual_seed_all(seed)
|
webui.py
CHANGED
@@ -24,6 +24,7 @@ ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
|
24 |
sys.path.append('{}/third_party/Matcha-TTS'.format(ROOT_DIR))
|
25 |
from cosyvoice.cli.cosyvoice import CosyVoice
|
26 |
from cosyvoice.utils.file_utils import load_wav, logging
|
|
|
27 |
|
28 |
inference_mode_list = ['预训练音色', '3s极速复刻', '跨语种复刻', '自然语言控制']
|
29 |
instruct_dict = {'预训练音色': '1. 选择预训练音色\n2. 点击生成音频按钮',
|
@@ -42,13 +43,6 @@ def generate_seed():
|
|
42 |
}
|
43 |
|
44 |
|
45 |
-
def set_all_random_seed(seed):
|
46 |
-
random.seed(seed)
|
47 |
-
np.random.seed(seed)
|
48 |
-
torch.manual_seed(seed)
|
49 |
-
torch.cuda.manual_seed_all(seed)
|
50 |
-
|
51 |
-
|
52 |
def postprocess(speech, top_db=60, hop_length=220, win_length=440):
|
53 |
speech, _ = librosa.effects.trim(
|
54 |
speech, top_db=top_db,
|
|
|
24 |
sys.path.append('{}/third_party/Matcha-TTS'.format(ROOT_DIR))
|
25 |
from cosyvoice.cli.cosyvoice import CosyVoice
|
26 |
from cosyvoice.utils.file_utils import load_wav, logging
|
27 |
+
from cosyvoice.utils.common import set_all_random_seed
|
28 |
|
29 |
inference_mode_list = ['预训练音色', '3s极速复刻', '跨语种复刻', '自然语言控制']
|
30 |
instruct_dict = {'预训练音色': '1. 选择预训练音色\n2. 点击生成音频按钮',
|
|
|
43 |
}
|
44 |
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
def postprocess(speech, top_db=60, hop_length=220, win_length=440):
|
47 |
speech, _ = librosa.effects.trim(
|
48 |
speech, top_db=top_db,
|