akylai-tts-mini / app.py
Simonlob's picture
Update app.py
f1ed673 verified
import tempfile
from argparse import Namespace
from pathlib import Path
import gradio as gr
import soundfile as sf
import torch
from matcha.cli import (
MATCHA_URLS,
VOCODER_URLS,
assert_model_downloaded,
get_device,
load_matcha,
load_vocoder,
process_text,
to_waveform,
)
from matcha.utils.utils import get_user_data_dir, plot_tensor
LOCATION = Path(get_user_data_dir())
args = Namespace(
cpu=True,
model="akyl_ai",
vocoder="hifigan_T2_v1",
)
CURRENTLY_LOADED_MODEL = args.model
def MATCHA_TTS_LOC(x):
return LOCATION / f"{x}.ckpt"
def VOCODER_LOC(x):
return LOCATION / f"{x}"
LOGO_URL = "https://github.com/simonlobgromov/Matcha-TTS/blob/main/photo_2024-04-07_15-59-52.png"
RADIO_OPTIONS = {
"Akyl_AI": {
"model": "akyl_ai",
"vocoder": "hifigan_T2_v1",
},
}
# Ensure all the required models are downloaded
assert_model_downloaded(MATCHA_TTS_LOC("akyl_ai"), MATCHA_URLS["akyl_ai"])
assert_model_downloaded(VOCODER_LOC("hifigan_T2_v1"), VOCODER_URLS["hifigan_T2_v1"])
device = get_device(args)
# Load default model
model = load_matcha(args.model, MATCHA_TTS_LOC(args.model), device)
vocoder, denoiser = load_vocoder(args.vocoder, VOCODER_LOC(args.vocoder), device)
def load_model(model_name, vocoder_name):
model = load_matcha(model_name, MATCHA_TTS_LOC(model_name), device)
vocoder, denoiser = load_vocoder(vocoder_name, VOCODER_LOC(vocoder_name), device)
return model, vocoder, denoiser
def load_model_ui(model_type, textbox):
model_name, vocoder_name = RADIO_OPTIONS[model_type]["model"], RADIO_OPTIONS[model_type]["vocoder"]
global model, vocoder, denoiser, CURRENTLY_LOADED_MODEL # pylint: disable=global-statement
if CURRENTLY_LOADED_MODEL != model_name:
model, vocoder, denoiser = load_model(model_name, vocoder_name)
CURRENTLY_LOADED_MODEL = model_name
if model_name == "akyl_ai":
single_speaker_examples = gr.update(visible=True)
multi_speaker_examples = gr.update(visible=False)
length_scale = gr.update(value=0.95)
else:
single_speaker_examples = gr.update(visible=False)
multi_speaker_examples = gr.update(visible=True)
length_scale = gr.update(value=0.85)
return (
textbox,
gr.update(interactive=True),
single_speaker_examples,
multi_speaker_examples,
length_scale,
)
@torch.inference_mode()
def process_text_gradio(text):
output = process_text(1, text, device)
return output["x_phones"][1::2], output["x"], output["x_lengths"]
@torch.inference_mode()
def synthesise_mel(text, text_length, n_timesteps, temperature, length_scale, spk=-1):
spk = torch.tensor([spk], device=device, dtype=torch.long) if spk >= 0 else None
output = model.synthesise(
text,
text_length,
n_timesteps=n_timesteps,
temperature=temperature,
spks=spk,
length_scale=length_scale,
)
output["waveform"] = to_waveform(output["mel"], vocoder, denoiser)
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp:
sf.write(fp.name, output["waveform"], 22050, "PCM_24")
return fp.name, plot_tensor(output["mel"].squeeze().cpu().numpy())
def ljspeech_example_cacher(text, n_timesteps, mel_temp, length_scale, spk=-1):
global CURRENTLY_LOADED_MODEL # pylint: disable=global-statement
if CURRENTLY_LOADED_MODEL == "akyl_ai":
global model, vocoder, denoiser # pylint: disable=global-statement
model, vocoder, denoiser = load_model("akyl_ai", "hifigan_T2_v1")
CURRENTLY_LOADED_MODEL = "akyl_ai"
phones, text, text_lengths = process_text_gradio(text)
audio, mel_spectrogram = synthesise_mel(text, text_lengths, n_timesteps, mel_temp, length_scale, spk)
return phones, audio, mel_spectrogram
def main():
description = """# AkylAI TTS Mini"""
with gr.Blocks(title="AkylAI TTS") as demo:
processed_text = gr.State(value=None)
processed_text_len = gr.State(value=None)
with gr.Box():
with gr.Row():
gr.Markdown(description, scale=3)
with gr.Row():
image_url = "https://github.com/simonlobgromov/Matcha-TTS/blob/main/photo_2024-04-07_15-59-52.png?raw=true"
gr.Image(image_url, label=None, width=660, height=315, show_label=False)
with gr.Box():
radio_options = list(RADIO_OPTIONS.keys())
model_type = gr.Radio(
radio_options, value=radio_options[0], label="Choose a Model", interactive=True, container=False, visible=False,
)
with gr.Row():
gr.Markdown("## Текстти кыргыз тилинде жазыңыз\n### Text Input")
with gr.Row():
text = gr.Textbox(value="", label=None, scale=3, show_label=False)
with gr.Row():
gr.Markdown("## Сүйлөө ылдамдыгы\n### Speaking rate")
# gr.Markdown("")
with gr.Row():
n_timesteps = gr.Slider(
label="Number of ODE steps",
minimum=1,
maximum=100,
step=1,
value=10,
interactive=True,
visible=False
)
length_scale = gr.Slider(
label=None,
minimum=0.5,
maximum=1,
step=0.05,
value=0.8,
interactive=True,
show_label=False
)
mel_temp = gr.Slider(
label="Sampling temperature",
minimum=0.00,
maximum=2.001,
step=0.16675,
value=0.667,
interactive=True,
visible=False
)
synth_btn = gr.Button("БАШТОО | RUN")
phonetised_text = gr.Textbox(interactive=False, scale=10, label=None, visible=False )
with gr.Box():
with gr.Row():
mel_spectrogram = gr.Image(interactive=False, label="mel spectrogram", visible=False)
# with gr.Row():
audio = gr.Audio(interactive=False, label="Audio")
with gr.Row(visible=True) as example_row_lj_speech:
examples = gr.Examples( # pylint: disable=unused-variable
examples=[
[
"Баарыңарга салам, менин атым Акылай. Мен бардыгын бул жерде Инновация борборунда көргөнүмө абдан кубанычтамын.",
50,
0.677,
0.8,
],
[
"Мага колдоо көрсөтүп, мени тандагандарга ыраазымын. Айыл үчүн иштейбиз, жол курабыз, асфальт төшөйбүз”, — деген ал.",
2,
0.677,
0.8,
],
],
fn=ljspeech_example_cacher,
inputs=[text, n_timesteps, mel_temp, length_scale],
outputs=[phonetised_text, audio, mel_spectrogram],
cache_examples=True,
)
model_type.change(lambda x: gr.update(interactive=False), inputs=[synth_btn], outputs=[synth_btn]).then(
load_model_ui,
inputs=[model_type, text],
outputs=[text, synth_btn, example_row_lj_speech, length_scale],
)
synth_btn.click(
fn=process_text_gradio,
inputs=[
text,
],
outputs=[phonetised_text, processed_text, processed_text_len],
api_name="AkylAI TTS Mini",
queue=True,
).then(
fn=synthesise_mel,
inputs=[processed_text, processed_text_len, n_timesteps, mel_temp, length_scale],
outputs=[audio, mel_spectrogram],
)
demo.queue().launch()
if __name__ == "__main__":
main()