runtime error
Traceback (most recent call last): File "/home/user/app/app.py", line 24, in <module> pretrained_model = DonutModel.from_pretrained(args.pretrained_path) File "/usr/local/lib/python3.10/site-packages/donut/model.py", line 593, in from_pretrained model = super(DonutModel, cls).from_pretrained(pretrained_model_name_or_path, revision="official", *model_args, **kwargs) File "/usr/local/lib/python3.10/site-packages/transformers/modeling_utils.py", line 3677, in from_pretrained ) = cls._load_pretrained_model( File "/usr/local/lib/python3.10/site-packages/transformers/modeling_utils.py", line 4155, in _load_pretrained_model raise RuntimeError(f"Error(s) in loading state_dict for {model.__class__.__name__}:\n\t{error_msg}") RuntimeError: Error(s) in loading state_dict for DonutModel: size mismatch for encoder.model.layers.1.downsample.norm.weight: copying a param with shape torch.Size([1024]) from checkpoint, the shape in current model is torch.Size([512]). size mismatch for encoder.model.layers.1.downsample.norm.bias: copying a param with shape torch.Size([1024]) from checkpoint, the shape in current model is torch.Size([512]). size mismatch for encoder.model.layers.1.downsample.reduction.weight: copying a param with shape torch.Size([512, 1024]) from checkpoint, the shape in current model is torch.Size([256, 512]). size mismatch for encoder.model.layers.2.downsample.norm.weight: copying a param with shape torch.Size([2048]) from checkpoint, the shape in current model is torch.Size([1024]). size mismatch for encoder.model.layers.2.downsample.norm.bias: copying a param with shape torch.Size([2048]) from checkpoint, the shape in current model is torch.Size([1024]). size mismatch for encoder.model.layers.2.downsample.reduction.weight: copying a param with shape torch.Size([1024, 2048]) from checkpoint, the shape in current model is torch.Size([512, 1024]). You may consider adding `ignore_mismatched_sizes=True` in the model `from_pretrained` method.
Container logs:
Fetching error logs...