MMOCR / docs /en /training.md
tomofi's picture
Add application file
2366e36
|
raw
history blame
No virus
13 kB
# Training
## Training on a Single GPU
You can use `tools/train.py` to train a model on a single machine with a CPU and optionally a GPU.
Here is the full usage of the script:
```shell
python tools/train.py ${CONFIG_FILE} [ARGS]
```
:::{note}
By default, MMOCR prefers GPU to CPU. If you want to train a model on CPU, please empty `CUDA_VISIBLE_DEVICES` or set it to -1 to make GPU invisible to the program. Note that CPU training requires **MMCV >= 1.4.4**.
```bash
CUDA_VISIBLE_DEVICES= python tools/train.py ${CONFIG_FILE} [ARGS]
```
:::
| ARGS | Type | Description |
| ----------------- | --------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `--work-dir` | str | The target folder to save logs and checkpoints. Defaults to `./work_dirs`. |
| `--load-from` | str | Path to the pre-trained model, which will be used to initialize the network parameters. |
| `--resume-from` | str | Resume training from a previously saved checkpoint, which will inherit the training epoch and optimizer parameters. |
| `--no-validate` | bool | Disable checkpoint evaluation during training. Defaults to `False`. |
| `--gpus` | int | **Deprecated, please use --gpu-id.** Numbers of gpus to use. Only applicable to non-distributed training. |
| `--gpu-ids` | int*N | **Deprecated, please use --gpu-id.** A list of GPU ids to use. Only applicable to non-distributed training. |
| `--gpu-id` | int | The GPU id to use. Only applicable to non-distributed training. |
| `--seed` | int | Random seed. |
| `--diff_seed` | bool | Whether or not set different seeds for different ranks. |
| `--deterministic` | bool | Whether to set deterministic options for CUDNN backend. |
| `--cfg-options` | str | Override some settings in the used config, the key-value pair in xxx=yyy format will be merged into the config file. If the value to be overwritten is a list, it should be of the form of either key="[a,b]" or key=a,b. The argument also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]". Note that the quotation marks are necessary and that no white space is allowed. |
| `--launcher` | 'none', 'pytorch', 'slurm', 'mpi' | Options for job launcher. |
| `--local_rank` | int | Used for distributed training. |
| `--mc-config` | str | Memory cache config for image loading speed-up during training. |
## Training on Multiple GPUs
MMOCR implements **distributed** training with `MMDistributedDataParallel`. (Please refer to [datasets.md](datasets.md) to prepare your datasets)
```shell
[PORT={PORT}] ./tools/dist_train.sh ${CONFIG_FILE} ${WORK_DIR} ${GPU_NUM} [PY_ARGS]
```
| Arguments | Type | Description |
| --------- | ---- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| `PORT` | int | The master port that will be used by the machine with rank 0. Defaults to 29500. **Note:** If you are launching multiple distrbuted training jobs on a single machine, you need to specify different ports for each job to avoid port conflicts. |
| `PY_ARGS` | str | Arguments to be parsed by `tools/train.py`. |
## Training on Multiple Machines
MMOCR relies on torch.distributed package for distributed training. Thus, as a basic usage, one can launch distributed training via PyTorch’s [launch utility](https://pytorch.org/docs/stable/distributed.html#launch-utility).
## Training with Slurm
If you run MMOCR on a cluster managed with [Slurm](https://slurm.schedmd.com/), you can use the script `slurm_train.sh`.
```shell
[GPUS=${GPUS}] [GPUS_PER_NODE=${GPUS_PER_NODE}] [CPUS_PER_TASK=${CPUS_PER_TASK}] [SRUN_ARGS=${SRUN_ARGS}] ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} ${CONFIG_FILE} ${WORK_DIR} [PY_ARGS]
```
| Arguments | Type | Description |
| --------------- | ---- | ----------------------------------------------------------------------------------------------------------- |
| `GPUS` | int | The number of GPUs to be used by this task. Defaults to 8. |
| `GPUS_PER_NODE` | int | The number of GPUs to be allocated per node. Defaults to 8. |
| `CPUS_PER_TASK` | int | The number of CPUs to be allocated per task. Defaults to 5. |
| `SRUN_ARGS` | str | Arguments to be parsed by srun. Available options can be found [here](https://slurm.schedmd.com/srun.html). |
| `PY_ARGS` | str | Arguments to be parsed by `tools/train.py`. |
Here is an example of using 8 GPUs to train a text detection model on the dev partition.
```shell
./tools/slurm_train.sh dev psenet-ic15 configs/textdet/psenet/psenet_r50_fpnf_sbn_1x_icdar2015.py /nfs/xxxx/psenet-ic15
```
### Running Multiple Training Jobs on a Single Machine
If you are launching multiple training jobs on a single machine with Slurm, you may need to modify the port in configs to avoid communication conflicts.
For example, in `config1.py`,
```python
dist_params = dict(backend='nccl', port=29500)
```
In `config2.py`,
```python
dist_params = dict(backend='nccl', port=29501)
```
Then you can launch two jobs with `config1.py` ang `config2.py`.
```shell
CUDA_VISIBLE_DEVICES=0,1,2,3 GPUS=4 ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} config1.py ${WORK_DIR}
CUDA_VISIBLE_DEVICES=4,5,6,7 GPUS=4 ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} config2.py ${WORK_DIR}
```
## Commonly Used Training Configs
Here we list some configs that are frequently used during training for quick reference.
```python
total_epochs = 1200
data = dict(
# Note: User can configure general settings of train, val and test dataloader by specifying them here. However, their values can be overridden in dataloader's config.
samples_per_gpu=8, # Batch size per GPU
workers_per_gpu=4, # Number of workers to process data for each GPU
train_dataloader=dict(samples_per_gpu=10, drop_last=True), # Batch size = 10, workers_per_gpu = 4
val_dataloader=dict(samples_per_gpu=6, workers_per_gpu=1), # Batch size = 6, workers_per_gpu = 1
test_dataloader=dict(workers_per_gpu=16), # Batch size = 8, workers_per_gpu = 16
...
)
# Evaluation
evaluation = dict(interval=1, by_epoch=True) # Evaluate the model every epoch
# Saving and Logging
checkpoint_config = dict(interval=1) # Save a checkpoint every epoch
log_config = dict(
interval=5, # Print out the model's performance every 5 iterations
hooks=[
dict(type='TextLoggerHook')
])
# Optimizer
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001) # Supports all optimizers in PyTorch and shares the same parameters
optimizer_config = dict(grad_clip=None) # Parameters for the optimizer hook. See https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/optimizer.py for implementation details
# Learning policy
lr_config = dict(policy='poly', power=0.9, min_lr=1e-7, by_epoch=True)
```