Spaces:
Runtime error
Runtime error
# ------------------------------------------------------------------------------ | |
# Adapted from https://github.com/lonePatient/BERT-NER-Pytorch | |
# Original licence: Copyright (c) 2020 Weitang Liu, under the MIT License. | |
# ------------------------------------------------------------------------------ | |
import math | |
import torch | |
import torch.nn as nn | |
from mmocr.models.builder import build_activation_layer | |
class BertModel(nn.Module): | |
"""Implement Bert model for named entity recognition task. | |
The code is adapted from https://github.com/lonePatient/BERT-NER-Pytorch | |
Args: | |
num_hidden_layers (int): The number of hidden layers. | |
initializer_range (float): | |
vocab_size (int): Number of words supported. | |
hidden_size (int): Hidden size. | |
max_position_embeddings (int): Max positionsembedding size. | |
type_vocab_size (int): The size of type_vocab. | |
layer_norm_eps (float): eps. | |
hidden_dropout_prob (float): The dropout probability of hidden layer. | |
output_attentions (bool): Whether use the attentions in output | |
output_hidden_states (bool): Whether use the hidden_states in output. | |
num_attention_heads (int): The number of attention heads. | |
attention_probs_dropout_prob (float): The dropout probability | |
for the attention probabilities normalized from | |
the attention scores. | |
intermediate_size (int): The size of intermediate layer. | |
hidden_act_cfg (str): hidden layer activation | |
""" | |
def __init__(self, | |
num_hidden_layers=12, | |
initializer_range=0.02, | |
vocab_size=21128, | |
hidden_size=768, | |
max_position_embeddings=128, | |
type_vocab_size=2, | |
layer_norm_eps=1e-12, | |
hidden_dropout_prob=0.1, | |
output_attentions=False, | |
output_hidden_states=False, | |
num_attention_heads=12, | |
attention_probs_dropout_prob=0.1, | |
intermediate_size=3072, | |
hidden_act_cfg=dict(type='GeluNew')): | |
super().__init__() | |
self.embeddings = BertEmbeddings( | |
vocab_size=vocab_size, | |
hidden_size=hidden_size, | |
max_position_embeddings=max_position_embeddings, | |
type_vocab_size=type_vocab_size, | |
layer_norm_eps=layer_norm_eps, | |
hidden_dropout_prob=hidden_dropout_prob) | |
self.encoder = BertEncoder( | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
num_hidden_layers=num_hidden_layers, | |
hidden_size=hidden_size, | |
num_attention_heads=num_attention_heads, | |
attention_probs_dropout_prob=attention_probs_dropout_prob, | |
layer_norm_eps=layer_norm_eps, | |
hidden_dropout_prob=hidden_dropout_prob, | |
intermediate_size=intermediate_size, | |
hidden_act_cfg=hidden_act_cfg) | |
self.pooler = BertPooler(hidden_size=hidden_size) | |
self.num_hidden_layers = num_hidden_layers | |
self.initializer_range = initializer_range | |
self.init_weights() | |
def _resize_token_embeddings(self, new_num_tokens): | |
old_embeddings = self.embeddings.word_embeddings | |
new_embeddings = self._get_resized_embeddings(old_embeddings, | |
new_num_tokens) | |
self.embeddings.word_embeddings = new_embeddings | |
return self.embeddings.word_embeddings | |
def forward(self, | |
input_ids, | |
attention_masks=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None): | |
if attention_masks is None: | |
attention_masks = torch.ones_like(input_ids) | |
if token_type_ids is None: | |
token_type_ids = torch.zeros_like(input_ids) | |
attention_masks = attention_masks[:, None, None] | |
attention_masks = attention_masks.to( | |
dtype=next(self.parameters()).dtype) | |
attention_masks = (1.0 - attention_masks) * -10000.0 | |
if head_mask is not None: | |
if head_mask.dim() == 1: | |
head_mask = head_mask[None, None, :, None, None] | |
elif head_mask.dim() == 2: | |
head_mask = head_mask[None, :, None, None] | |
head_mask = head_mask.to(dtype=next(self.parameters()).dtype) | |
else: | |
head_mask = [None] * self.num_hidden_layers | |
embedding_output = self.embeddings( | |
input_ids, | |
position_ids=position_ids, | |
token_type_ids=token_type_ids) | |
sequence_output, *encoder_outputs = self.encoder( | |
embedding_output, attention_masks, head_mask=head_mask) | |
# sequence_output = encoder_outputs[0] | |
pooled_output = self.pooler(sequence_output) | |
# add hidden_states and attentions if they are here | |
# sequence_output, pooled_output, (hidden_states), (attentions) | |
outputs = ( | |
sequence_output, | |
pooled_output, | |
) + tuple(encoder_outputs) | |
return outputs | |
def _init_weights(self, module): | |
"""Initialize the weights.""" | |
if isinstance(module, (nn.Linear, nn.Embedding)): | |
# Slightly different from the TF version which | |
# uses truncated_normal for initialization | |
# cf https://github.com/pytorch/pytorch/pull/5617 | |
module.weight.data.normal_(mean=0.0, std=self.initializer_range) | |
elif isinstance(module, torch.nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
if isinstance(module, nn.Linear) and module.bias is not None: | |
module.bias.data.zero_() | |
def init_weights(self): | |
"""Initialize and prunes weights if needed.""" | |
# Initialize weights | |
self.apply(self._init_weights) | |
class BertEmbeddings(nn.Module): | |
"""Construct the embeddings from word, position and token_type embeddings. | |
The code is adapted from https://github.com/lonePatient/BERT-NER-Pytorch. | |
Args: | |
vocab_size (int): Number of words supported. | |
hidden_size (int): Hidden size. | |
max_position_embeddings (int): Max positions embedding size. | |
type_vocab_size (int): The size of type_vocab. | |
layer_norm_eps (float): eps. | |
hidden_dropout_prob (float): The dropout probability of hidden layer. | |
""" | |
def __init__(self, | |
vocab_size=21128, | |
hidden_size=768, | |
max_position_embeddings=128, | |
type_vocab_size=2, | |
layer_norm_eps=1e-12, | |
hidden_dropout_prob=0.1): | |
super().__init__() | |
self.word_embeddings = nn.Embedding( | |
vocab_size, hidden_size, padding_idx=0) | |
self.position_embeddings = nn.Embedding(max_position_embeddings, | |
hidden_size) | |
self.token_type_embeddings = nn.Embedding(type_vocab_size, hidden_size) | |
# self.LayerNorm is not snake-cased to stick with | |
# TensorFlow model variable name and be able to load | |
# any TensorFlow checkpoint file | |
self.LayerNorm = torch.nn.LayerNorm(hidden_size, eps=layer_norm_eps) | |
self.dropout = nn.Dropout(hidden_dropout_prob) | |
def forward(self, input_ids, token_type_ids=None, position_ids=None): | |
seq_length = input_ids.size(1) | |
if position_ids is None: | |
position_ids = torch.arange( | |
seq_length, dtype=torch.long, device=input_ids.device) | |
position_ids = position_ids.unsqueeze(0).expand_as(input_ids) | |
if token_type_ids is None: | |
token_type_ids = torch.zeros_like(input_ids) | |
words_emb = self.word_embeddings(input_ids) | |
position_emb = self.position_embeddings(position_ids) | |
token_type_emb = self.token_type_embeddings(token_type_ids) | |
embeddings = words_emb + position_emb + token_type_emb | |
embeddings = self.LayerNorm(embeddings) | |
embeddings = self.dropout(embeddings) | |
return embeddings | |
class BertEncoder(nn.Module): | |
"""The code is adapted from https://github.com/lonePatient/BERT-NER- | |
Pytorch.""" | |
def __init__(self, | |
output_attentions=False, | |
output_hidden_states=False, | |
num_hidden_layers=12, | |
hidden_size=768, | |
num_attention_heads=12, | |
attention_probs_dropout_prob=0.1, | |
layer_norm_eps=1e-12, | |
hidden_dropout_prob=0.1, | |
intermediate_size=3072, | |
hidden_act_cfg=dict(type='GeluNew')): | |
super().__init__() | |
self.output_attentions = output_attentions | |
self.output_hidden_states = output_hidden_states | |
self.layer = nn.ModuleList([ | |
BertLayer( | |
hidden_size=hidden_size, | |
num_attention_heads=num_attention_heads, | |
output_attentions=output_attentions, | |
attention_probs_dropout_prob=attention_probs_dropout_prob, | |
layer_norm_eps=layer_norm_eps, | |
hidden_dropout_prob=hidden_dropout_prob, | |
intermediate_size=intermediate_size, | |
hidden_act_cfg=hidden_act_cfg) | |
for _ in range(num_hidden_layers) | |
]) | |
def forward(self, hidden_states, attention_mask=None, head_mask=None): | |
all_hidden_states = () | |
all_attentions = () | |
for i, layer_module in enumerate(self.layer): | |
if self.output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states, ) | |
layer_outputs = layer_module(hidden_states, attention_mask, | |
head_mask[i]) | |
hidden_states = layer_outputs[0] | |
if self.output_attentions: | |
all_attentions = all_attentions + (layer_outputs[1], ) | |
# Add last layer | |
if self.output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states, ) | |
outputs = (hidden_states, ) | |
if self.output_hidden_states: | |
outputs = outputs + (all_hidden_states, ) | |
if self.output_attentions: | |
outputs = outputs + (all_attentions, ) | |
# last-layer hidden state, (all hidden states), (all attentions) | |
return outputs | |
class BertPooler(nn.Module): | |
def __init__(self, hidden_size=768): | |
super().__init__() | |
self.dense = nn.Linear(hidden_size, hidden_size) | |
self.activation = nn.Tanh() | |
def forward(self, hidden_states): | |
# We "pool" the model by simply taking the hidden state corresponding | |
# to the first token. | |
first_token_tensor = hidden_states[:, 0] | |
pooled_output = self.dense(first_token_tensor) | |
pooled_output = self.activation(pooled_output) | |
return pooled_output | |
class BertLayer(nn.Module): | |
"""Bert layer. | |
The code is adapted from https://github.com/lonePatient/BERT-NER-Pytorch. | |
""" | |
def __init__(self, | |
hidden_size=768, | |
num_attention_heads=12, | |
output_attentions=False, | |
attention_probs_dropout_prob=0.1, | |
layer_norm_eps=1e-12, | |
hidden_dropout_prob=0.1, | |
intermediate_size=3072, | |
hidden_act_cfg=dict(type='GeluNew')): | |
super().__init__() | |
self.attention = BertAttention( | |
hidden_size=hidden_size, | |
num_attention_heads=num_attention_heads, | |
output_attentions=output_attentions, | |
attention_probs_dropout_prob=attention_probs_dropout_prob, | |
layer_norm_eps=layer_norm_eps, | |
hidden_dropout_prob=hidden_dropout_prob) | |
self.intermediate = BertIntermediate( | |
hidden_size=hidden_size, | |
intermediate_size=intermediate_size, | |
hidden_act_cfg=hidden_act_cfg) | |
self.output = BertOutput( | |
intermediate_size=intermediate_size, | |
hidden_size=hidden_size, | |
layer_norm_eps=layer_norm_eps, | |
hidden_dropout_prob=hidden_dropout_prob) | |
def forward(self, hidden_states, attention_mask=None, head_mask=None): | |
attention_outputs = self.attention(hidden_states, attention_mask, | |
head_mask) | |
attention_output = attention_outputs[0] | |
intermediate_output = self.intermediate(attention_output) | |
layer_output = self.output(intermediate_output, attention_output) | |
outputs = (layer_output, ) + attention_outputs[ | |
1:] # add attentions if we output them | |
return outputs | |
class BertSelfAttention(nn.Module): | |
"""Bert self attention module. | |
The code is adapted from https://github.com/lonePatient/BERT-NER-Pytorch. | |
""" | |
def __init__(self, | |
hidden_size=768, | |
num_attention_heads=12, | |
output_attentions=False, | |
attention_probs_dropout_prob=0.1): | |
super().__init__() | |
if hidden_size % num_attention_heads != 0: | |
raise ValueError('The hidden size (%d) is not a multiple of' | |
'the number of attention heads (%d)' % | |
(hidden_size, num_attention_heads)) | |
self.output_attentions = output_attentions | |
self.num_attention_heads = num_attention_heads | |
self.att_head_size = int(hidden_size / num_attention_heads) | |
self.all_head_size = self.num_attention_heads * self.att_head_size | |
self.query = nn.Linear(hidden_size, self.all_head_size) | |
self.key = nn.Linear(hidden_size, self.all_head_size) | |
self.value = nn.Linear(hidden_size, self.all_head_size) | |
self.dropout = nn.Dropout(attention_probs_dropout_prob) | |
def transpose_for_scores(self, x): | |
new_x_shape = x.size()[:-1] + (self.num_attention_heads, | |
self.att_head_size) | |
x = x.view(*new_x_shape) | |
return x.permute(0, 2, 1, 3) | |
def forward(self, hidden_states, attention_mask=None, head_mask=None): | |
mixed_query_layer = self.query(hidden_states) | |
mixed_key_layer = self.key(hidden_states) | |
mixed_value_layer = self.value(hidden_states) | |
query_layer = self.transpose_for_scores(mixed_query_layer) | |
key_layer = self.transpose_for_scores(mixed_key_layer) | |
value_layer = self.transpose_for_scores(mixed_value_layer) | |
# Take the dot product between "query" and | |
# "key" to get the raw attention scores. | |
attention_scores = torch.matmul(query_layer, | |
key_layer.transpose(-1, -2)) | |
attention_scores = attention_scores / math.sqrt(self.att_head_size) | |
if attention_mask is not None: | |
# Apply the attention mask is precomputed for | |
# all layers in BertModel forward() function. | |
attention_scores = attention_scores + attention_mask | |
# Normalize the attention scores to probabilities. | |
attention_probs = nn.Softmax(dim=-1)(attention_scores) | |
# This is actually dropping out entire tokens to attend to, which might | |
# seem a bit unusual, but is taken from the original Transformer paper. | |
attention_probs = self.dropout(attention_probs) | |
# Mask heads if we want to. | |
if head_mask is not None: | |
attention_probs = attention_probs * head_mask | |
context_layer = torch.matmul(attention_probs, value_layer) | |
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() | |
new_context_layer_shape = context_layer.size()[:-2] + ( | |
self.all_head_size, ) | |
context_layer = context_layer.view(*new_context_layer_shape) | |
outputs = (context_layer, | |
attention_probs) if self.output_attentions else ( | |
context_layer, ) | |
return outputs | |
class BertSelfOutput(nn.Module): | |
"""Bert self output. | |
The code is adapted from https://github.com/lonePatient/BERT-NER-Pytorch. | |
""" | |
def __init__(self, | |
hidden_size=768, | |
layer_norm_eps=1e-12, | |
hidden_dropout_prob=0.1): | |
super().__init__() | |
self.dense = nn.Linear(hidden_size, hidden_size) | |
self.LayerNorm = torch.nn.LayerNorm(hidden_size, eps=layer_norm_eps) | |
self.dropout = nn.Dropout(hidden_dropout_prob) | |
def forward(self, hidden_states, input_tensor): | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states + input_tensor) | |
return hidden_states | |
class BertAttention(nn.Module): | |
"""Bert Attention module implementation. | |
The code is adapted from https://github.com/lonePatient/BERT-NER-Pytorch. | |
""" | |
def __init__(self, | |
hidden_size=768, | |
num_attention_heads=12, | |
output_attentions=False, | |
attention_probs_dropout_prob=0.1, | |
layer_norm_eps=1e-12, | |
hidden_dropout_prob=0.1): | |
super().__init__() | |
self.self = BertSelfAttention( | |
hidden_size=hidden_size, | |
num_attention_heads=num_attention_heads, | |
output_attentions=output_attentions, | |
attention_probs_dropout_prob=attention_probs_dropout_prob) | |
self.output = BertSelfOutput( | |
hidden_size=hidden_size, | |
layer_norm_eps=layer_norm_eps, | |
hidden_dropout_prob=hidden_dropout_prob) | |
def forward(self, input_tensor, attention_mask=None, head_mask=None): | |
self_outputs = self.self(input_tensor, attention_mask, head_mask) | |
attention_output = self.output(self_outputs[0], input_tensor) | |
outputs = (attention_output, | |
) + self_outputs[1:] # add attentions if we output them | |
return outputs | |
class BertIntermediate(nn.Module): | |
"""Bert BertIntermediate module implementation. | |
The code is adapted from https://github.com/lonePatient/BERT-NER-Pytorch. | |
""" | |
def __init__(self, | |
hidden_size=768, | |
intermediate_size=3072, | |
hidden_act_cfg=dict(type='GeluNew')): | |
super().__init__() | |
self.dense = nn.Linear(hidden_size, intermediate_size) | |
self.intermediate_act_fn = build_activation_layer(hidden_act_cfg) | |
def forward(self, hidden_states): | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.intermediate_act_fn(hidden_states) | |
return hidden_states | |
class BertOutput(nn.Module): | |
"""Bert output module. | |
The code is adapted from https://github.com/lonePatient/BERT-NER-Pytorch. | |
""" | |
def __init__(self, | |
intermediate_size=3072, | |
hidden_size=768, | |
layer_norm_eps=1e-12, | |
hidden_dropout_prob=0.1): | |
super().__init__() | |
self.dense = nn.Linear(intermediate_size, hidden_size) | |
self.LayerNorm = torch.nn.LayerNorm(hidden_size, eps=layer_norm_eps) | |
self.dropout = nn.Dropout(hidden_dropout_prob) | |
def forward(self, hidden_states, input_tensor): | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states + input_tensor) | |
return hidden_states | |