Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import torch | |
import torch.nn.functional as F | |
from mmcv.cnn import ConvModule | |
from mmcv.runner import BaseModule, ModuleList | |
from mmocr.models.builder import NECKS | |
class FPNOCR(BaseModule): | |
"""FPN-like Network for segmentation based text recognition. | |
Args: | |
in_channels (list[int]): Number of input channels :math:`C_i` for each | |
scale. | |
out_channels (int): Number of output channels :math:`C_{out}` for each | |
scale. | |
last_stage_only (bool): If True, output last stage only. | |
init_cfg (dict or list[dict], optional): Initialization configs. | |
""" | |
def __init__(self, | |
in_channels, | |
out_channels, | |
last_stage_only=True, | |
init_cfg=None): | |
super().__init__(init_cfg=init_cfg) | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.num_ins = len(in_channels) | |
self.last_stage_only = last_stage_only | |
self.lateral_convs = ModuleList() | |
self.smooth_convs_1x1 = ModuleList() | |
self.smooth_convs_3x3 = ModuleList() | |
for i in range(self.num_ins): | |
l_conv = ConvModule( | |
in_channels[i], out_channels, 1, norm_cfg=dict(type='BN')) | |
self.lateral_convs.append(l_conv) | |
for i in range(self.num_ins - 1): | |
s_conv_1x1 = ConvModule( | |
out_channels * 2, out_channels, 1, norm_cfg=dict(type='BN')) | |
s_conv_3x3 = ConvModule( | |
out_channels, | |
out_channels, | |
3, | |
padding=1, | |
norm_cfg=dict(type='BN')) | |
self.smooth_convs_1x1.append(s_conv_1x1) | |
self.smooth_convs_3x3.append(s_conv_3x3) | |
def _upsample_x2(self, x): | |
return F.interpolate(x, scale_factor=2, mode='bilinear') | |
def forward(self, inputs): | |
""" | |
Args: | |
inputs (list[Tensor]): A list of n tensors. Each tensor has the | |
shape of :math:`(N, C_i, H_i, W_i)`. It usually expects 4 | |
tensors (C2-C5 features) from ResNet. | |
Returns: | |
tuple(Tensor): A tuple of n-1 tensors. Each has the of shape | |
:math:`(N, C_{out}, H_{n-2-i}, W_{n-2-i})`. If | |
``last_stage_only=True`` (default), the size of the | |
tuple is 1 and only the last element will be returned. | |
""" | |
lateral_features = [ | |
l_conv(inputs[i]) for i, l_conv in enumerate(self.lateral_convs) | |
] | |
outs = [] | |
for i in range(len(self.smooth_convs_3x3), 0, -1): # 3, 2, 1 | |
last_out = lateral_features[-1] if len(outs) == 0 else outs[-1] | |
upsample = self._upsample_x2(last_out) | |
upsample_cat = torch.cat((upsample, lateral_features[i - 1]), | |
dim=1) | |
smooth_1x1 = self.smooth_convs_1x1[i - 1](upsample_cat) | |
smooth_3x3 = self.smooth_convs_3x3[i - 1](smooth_1x1) | |
outs.append(smooth_3x3) | |
return tuple(outs[-1:]) if self.last_stage_only else tuple(outs) | |