MMOCR / docs /en /datasets /recog.md
tomofi's picture
Add application file
2366e36
|
raw
history blame
23.8 kB
# Text Recognition
## Overview
**The structure of the text recognition dataset directory is organized as follows.**
```text
β”œβ”€β”€ mixture
β”‚Β Β  β”œβ”€β”€ coco_text
β”‚ β”‚ β”œβ”€β”€ train_label.txt
β”‚ β”‚ β”œβ”€β”€ train_words
β”‚Β Β  β”œβ”€β”€ icdar_2011
β”‚ β”‚ β”œβ”€β”€ training_label.txt
β”‚ β”‚ β”œβ”€β”€ Challenge1_Training_Task3_Images_GT
β”‚Β Β  β”œβ”€β”€ icdar_2013
β”‚ β”‚ β”œβ”€β”€ train_label.txt
β”‚ β”‚ β”œβ”€β”€ test_label_1015.txt
β”‚ β”‚ β”œβ”€β”€ test_label_1095.txt
β”‚ β”‚ β”œβ”€β”€ Challenge2_Training_Task3_Images_GT
β”‚ β”‚ β”œβ”€β”€ Challenge2_Test_Task3_Images
β”‚Β Β  β”œβ”€β”€ icdar_2015
β”‚ β”‚ β”œβ”€β”€ train_label.txt
β”‚ β”‚ β”œβ”€β”€ test_label.txt
β”‚ β”‚ β”œβ”€β”€ ch4_training_word_images_gt
β”‚ β”‚ β”œβ”€β”€ ch4_test_word_images_gt
β”‚Β Β  β”œβ”€β”€ III5K
β”‚ β”‚ β”œβ”€β”€ train_label.txt
β”‚ β”‚ β”œβ”€β”€ test_label.txt
β”‚ β”‚ β”œβ”€β”€ train
β”‚ β”‚ β”œβ”€β”€ test
β”‚Β Β  β”œβ”€β”€ ct80
β”‚ β”‚ β”œβ”€β”€ test_label.txt
β”‚ β”‚ β”œβ”€β”€ image
β”‚Β Β  β”œβ”€β”€ svt
β”‚ β”‚ β”œβ”€β”€ test_label.txt
β”‚ β”‚ β”œβ”€β”€ image
β”‚Β Β  β”œβ”€β”€ svtp
β”‚ β”‚ β”œβ”€β”€ test_label.txt
β”‚ β”‚ β”œβ”€β”€ image
β”‚Β Β  β”œβ”€β”€ Syn90k
β”‚ β”‚ β”œβ”€β”€ shuffle_labels.txt
β”‚ β”‚ β”œβ”€β”€ label.txt
β”‚ β”‚ β”œβ”€β”€ label.lmdb
β”‚ β”‚ β”œβ”€β”€ mnt
β”‚Β Β  β”œβ”€β”€ SynthText
β”‚ β”‚ β”œβ”€β”€ alphanumeric_labels.txt
β”‚ β”‚ β”œβ”€β”€ shuffle_labels.txt
β”‚ β”‚ β”œβ”€β”€ instances_train.txt
β”‚ β”‚ β”œβ”€β”€ label.txt
β”‚ β”‚ β”œβ”€β”€ label.lmdb
β”‚ β”‚ β”œβ”€β”€ synthtext
β”‚Β Β  β”œβ”€β”€ SynthAdd
β”‚ β”‚ β”œβ”€β”€ label.txt
β”‚ β”‚ β”œβ”€β”€ label.lmdb
β”‚ β”‚ β”œβ”€β”€ SynthText_Add
β”‚Β Β  β”œβ”€β”€ TextOCR
β”‚ β”‚ β”œβ”€β”€ image
β”‚ β”‚ β”œβ”€β”€ train_label.txt
β”‚ β”‚ β”œβ”€β”€ val_label.txt
β”‚Β Β  β”œβ”€β”€ Totaltext
β”‚ β”‚ β”œβ”€β”€ imgs
β”‚ β”‚ β”œβ”€β”€ annotations
β”‚ β”‚ β”œβ”€β”€ train_label.txt
β”‚ β”‚ β”œβ”€β”€ test_label.txt
β”‚Β Β  β”œβ”€β”€ OpenVINO
β”‚ β”‚ β”œβ”€β”€ image_1
β”‚ β”‚ β”œβ”€β”€ image_2
β”‚ β”‚ β”œβ”€β”€ image_5
β”‚ β”‚ β”œβ”€β”€ image_f
β”‚ β”‚ β”œβ”€β”€ image_val
β”‚ β”‚ β”œβ”€β”€ train_1_label.txt
β”‚ β”‚ β”œβ”€β”€ train_2_label.txt
β”‚ β”‚ β”œβ”€β”€ train_5_label.txt
β”‚ β”‚ β”œβ”€β”€ train_f_label.txt
β”‚ β”‚ β”œβ”€β”€ val_label.txt
β”‚Β Β  β”œβ”€β”€ funsd
β”‚ β”‚ β”œβ”€β”€ imgs
β”‚ β”‚ β”œβ”€β”€ dst_imgs
β”‚ β”‚ β”œβ”€β”€ annotations
β”‚ β”‚ β”œβ”€β”€ train_label.txt
β”‚ β”‚ β”œβ”€β”€ test_label.txt
```
| Dataset | images | annotation file | annotation file |
| :-------------------: | :---------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------: |
| | | training | test |
| coco_text | [homepage](https://rrc.cvc.uab.es/?ch=5&com=downloads) | [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/coco_text/train_label.txt) | - | |
| icdar_2011 | [homepage](http://www.cvc.uab.es/icdar2011competition/?com=downloads) | [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2015/train_label.txt) | - | |
| icdar_2013 | [homepage](https://rrc.cvc.uab.es/?ch=2&com=downloads) | [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2013/train_label.txt) | [test_label_1015.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2013/test_label_1015.txt) | |
| icdar_2015 | [homepage](https://rrc.cvc.uab.es/?ch=4&com=downloads) | [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2015/train_label.txt) | [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2015/test_label.txt) | |
| IIIT5K | [homepage](http://cvit.iiit.ac.in/projects/SceneTextUnderstanding/IIIT5K.html) | [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/IIIT5K/train_label.txt) | [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/IIIT5K/test_label.txt) | |
| ct80 | [homepage](http://cs-chan.com/downloads_CUTE80_dataset.html) | - | [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/ct80/test_label.txt) | |
| svt | [homepage](http://www.iapr-tc11.org/mediawiki/index.php/The_Street_View_Text_Dataset) | - | [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/svt/test_label.txt) | |
| svtp | [unofficial homepage\[1\]](https://github.com/Jyouhou/Case-Sensitive-Scene-Text-Recognition-Datasets) | - | [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/svtp/test_label.txt) | |
| MJSynth (Syn90k) | [homepage](https://www.robots.ox.ac.uk/~vgg/data/text/) | [shuffle_labels.txt](https://download.openmmlab.com/mmocr/data/mixture/Syn90k/shuffle_labels.txt) \| [label.txt](https://download.openmmlab.com/mmocr/data/mixture/Syn90k/label.txt) | - | |
| SynthText (Synth800k) | [homepage](https://www.robots.ox.ac.uk/~vgg/data/scenetext/) | [alphanumeric_labels.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthText/alphanumeric_labels.txt) \|[shuffle_labels.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthText/shuffle_labels.txt) \| [instances_train.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthText/instances_train.txt) \| [label.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthText/label.txt) | - | |
| SynthAdd | [SynthText_Add.zip](https://pan.baidu.com/s/1uV0LtoNmcxbO-0YA7Ch4dg) (code:627x) | [label.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthAdd/label.txt) | - | |
| TextOCR | [homepage](https://textvqa.org/textocr/dataset) | - | - | |
| Totaltext | [homepage](https://github.com/cs-chan/Total-Text-Dataset) | - | - | |
| OpenVINO | [Open Images](https://github.com/cvdfoundation/open-images-dataset) | [annotations](https://storage.openvinotoolkit.org/repositories/openvino_training_extensions/datasets/open_images_v5_text) | [annotations](https://storage.openvinotoolkit.org/repositories/openvino_training_extensions/datasets/open_images_v5_text) | |
| FUNSD | [homepage](https://guillaumejaume.github.io/FUNSD/) | - | - | |
(*) Since the official homepage is unavailable now, we provide an alternative for quick reference. However, we do not guarantee the correctness of the dataset.
## Preparation Steps
### ICDAR 2013
- Step1: Download `Challenge2_Test_Task3_Images.zip` and `Challenge2_Training_Task3_Images_GT.zip` from [homepage](https://rrc.cvc.uab.es/?ch=2&com=downloads)
- Step2: Download [test_label_1015.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2013/test_label_1015.txt) and [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2013/train_label.txt)
### ICDAR 2015
- Step1: Download `ch4_training_word_images_gt.zip` and `ch4_test_word_images_gt.zip` from [homepage](https://rrc.cvc.uab.es/?ch=4&com=downloads)
- Step2: Download [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2015/train_label.txt) and [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2015/test_label.txt)
### IIIT5K
- Step1: Download `IIIT5K-Word_V3.0.tar.gz` from [homepage](http://cvit.iiit.ac.in/projects/SceneTextUnderstanding/IIIT5K.html)
- Step2: Download [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/IIIT5K/train_label.txt) and [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/IIIT5K/test_label.txt)
### svt
- Step1: Download `svt.zip` form [homepage](http://www.iapr-tc11.org/mediawiki/index.php/The_Street_View_Text_Dataset)
- Step2: Download [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/svt/test_label.txt)
- Step3:
```bash
python tools/data/textrecog/svt_converter.py <download_svt_dir_path>
```
### ct80
- Step1: Download [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/ct80/test_label.txt)
### svtp
- Step1: Download [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/svtp/test_label.txt)
### coco_text
- Step1: Download from [homepage](https://rrc.cvc.uab.es/?ch=5&com=downloads)
- Step2: Download [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/coco_text/train_label.txt)
### MJSynth (Syn90k)
- Step1: Download `mjsynth.tar.gz` from [homepage](https://www.robots.ox.ac.uk/~vgg/data/text/)
- Step2: Download [label.txt](https://download.openmmlab.com/mmocr/data/mixture/Syn90k/label.txt) (8,919,273 annotations) and [shuffle_labels.txt](https://download.openmmlab.com/mmocr/data/mixture/Syn90k/shuffle_labels.txt) (2,400,000 randomly sampled annotations). **Please make sure you're using the right annotation to train the model by checking its dataset specs in Model Zoo.**
- Step3:
```bash
mkdir Syn90k && cd Syn90k
mv /path/to/mjsynth.tar.gz .
tar -xzf mjsynth.tar.gz
mv /path/to/shuffle_labels.txt .
mv /path/to/label.txt .
# create soft link
cd /path/to/mmocr/data/mixture
ln -s /path/to/Syn90k Syn90k
```
### SynthText (Synth800k)
- Step1: Download `SynthText.zip` from [homepage](https://www.robots.ox.ac.uk/~vgg/data/scenetext/)
- Step2: According to your actual needs, download the most appropriate one from the following options: [label.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthText/label.txt) (7,266,686 annotations), [shuffle_labels.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthText/shuffle_labels.txt) (2,400,000 randomly sampled annotations), [alphanumeric_labels.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthText/alphanumeric_labels.txt) (7,239,272 annotations with alphanumeric characters only) and [instances_train.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthText/instances_train.txt) (7,266,686 character-level annotations).
:::{warning}
Please make sure you're using the right annotation to train the model by checking its dataset specs in Model Zoo.
:::
- Step3:
```bash
mkdir SynthText && cd SynthText
mv /path/to/SynthText.zip .
unzip SynthText.zip
mv SynthText synthtext
mv /path/to/shuffle_labels.txt .
mv /path/to/label.txt .
mv /path/to/alphanumeric_labels.txt .
mv /path/to/instances_train.txt .
# create soft link
cd /path/to/mmocr/data/mixture
ln -s /path/to/SynthText SynthText
```
- Step4:
Generate cropped images and labels:
```bash
cd /path/to/mmocr
python tools/data/textrecog/synthtext_converter.py data/mixture/SynthText/gt.mat data/mixture/SynthText/ data/mixture/SynthText/synthtext/SynthText_patch_horizontal --n_proc 8
```
### SynthAdd
- Step1: Download `SynthText_Add.zip` from [SynthAdd](https://pan.baidu.com/s/1uV0LtoNmcxbO-0YA7Ch4dg) (code:627x))
- Step2: Download [label.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthAdd/label.txt)
- Step3:
```bash
mkdir SynthAdd && cd SynthAdd
mv /path/to/SynthText_Add.zip .
unzip SynthText_Add.zip
mv /path/to/label.txt .
# create soft link
cd /path/to/mmocr/data/mixture
ln -s /path/to/SynthAdd SynthAdd
```
:::{tip}
To convert label file with `txt` format to `lmdb` format,
```bash
python tools/data/utils/txt2lmdb.py -i <txt_label_path> -o <lmdb_label_path>
```
For example,
```bash
python tools/data/utils/txt2lmdb.py -i data/mixture/Syn90k/label.txt -o data/mixture/Syn90k/label.lmdb
```
:::
### TextOCR
- Step1: Download [train_val_images.zip](https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip), [TextOCR_0.1_train.json](https://dl.fbaipublicfiles.com/textvqa/data/textocr/TextOCR_0.1_train.json) and [TextOCR_0.1_val.json](https://dl.fbaipublicfiles.com/textvqa/data/textocr/TextOCR_0.1_val.json) to `textocr/`.
```bash
mkdir textocr && cd textocr
# Download TextOCR dataset
wget https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip
wget https://dl.fbaipublicfiles.com/textvqa/data/textocr/TextOCR_0.1_train.json
wget https://dl.fbaipublicfiles.com/textvqa/data/textocr/TextOCR_0.1_val.json
# For images
unzip -q train_val_images.zip
mv train_images train
```
- Step2: Generate `train_label.txt`, `val_label.txt` and crop images using 4 processes with the following command:
```bash
python tools/data/textrecog/textocr_converter.py /path/to/textocr 4
```
### Totaltext
- Step1: Download `totaltext.zip` from [github dataset](https://github.com/cs-chan/Total-Text-Dataset/tree/master/Dataset) and `groundtruth_text.zip` from [github Groundtruth](https://github.com/cs-chan/Total-Text-Dataset/tree/master/Groundtruth/Text) (Our totaltext_converter.py supports groundtruth with both .mat and .txt format).
```bash
mkdir totaltext && cd totaltext
mkdir imgs && mkdir annotations
# For images
# in ./totaltext
unzip totaltext.zip
mv Images/Train imgs/training
mv Images/Test imgs/test
# For annotations
unzip groundtruth_text.zip
cd Groundtruth
mv Polygon/Train ../annotations/training
mv Polygon/Test ../annotations/test
```
- Step2: Generate cropped images, `train_label.txt` and `test_label.txt` with the following command (the cropped images will be saved to `data/totaltext/dst_imgs/`):
```bash
python tools/data/textrecog/totaltext_converter.py /path/to/totaltext -o /path/to/totaltext --split-list training test
```
### OpenVINO
- Step0: Install [awscli](https://aws.amazon.com/cli/).
- Step1: Download [Open Images](https://github.com/cvdfoundation/open-images-dataset#download-images-with-bounding-boxes-annotations) subsets `train_1`, `train_2`, `train_5`, `train_f`, and `validation` to `openvino/`.
```bash
mkdir openvino && cd openvino
# Download Open Images subsets
for s in 1 2 5 f; do
aws s3 --no-sign-request cp s3://open-images-dataset/tar/train_${s}.tar.gz .
done
aws s3 --no-sign-request cp s3://open-images-dataset/tar/validation.tar.gz .
# Download annotations
for s in 1 2 5 f; do
wget https://storage.openvinotoolkit.org/repositories/openvino_training_extensions/datasets/open_images_v5_text/text_spotting_openimages_v5_train_${s}.json
done
wget https://storage.openvinotoolkit.org/repositories/openvino_training_extensions/datasets/open_images_v5_text/text_spotting_openimages_v5_validation.json
# Extract images
mkdir -p openimages_v5/val
for s in 1 2 5 f; do
tar zxf train_${s}.tar.gz -C openimages_v5
done
tar zxf validation.tar.gz -C openimages_v5/val
```
- Step2: Generate `train_{1,2,5,f}_label.txt`, `val_label.txt` and crop images using 4 processes with the following command:
```bash
python tools/data/textrecog/openvino_converter.py /path/to/openvino 4
```
### FUNSD
- Step1: Download [dataset.zip](https://guillaumejaume.github.io/FUNSD/dataset.zip) to `funsd/`.
```bash
mkdir funsd && cd funsd
# Download FUNSD dataset
wget https://guillaumejaume.github.io/FUNSD/dataset.zip
unzip -q dataset.zip
# For images
mv dataset/training_data/images imgs && mv dataset/testing_data/images/* imgs/
# For annotations
mkdir annotations
mv dataset/training_data/annotations annotations/training && mv dataset/testing_data/annotations annotations/test
rm dataset.zip && rm -rf dataset
```
- Step2: Generate `train_label.txt` and `test_label.txt` and crop images using 4 processes with following command (add `--preserve-vertical` if you wish to preserve the images containing vertical texts):
```bash
python tools/data/textrecog/funsd_converter.py PATH/TO/funsd --nproc 4
```