Mask R-CNN
Introduction
@article{He_2017,
title={Mask R-CNN},
journal={2017 IEEE International Conference on Computer Vision (ICCV)},
publisher={IEEE},
author={He, Kaiming and Gkioxari, Georgia and Dollar, Piotr and Girshick, Ross},
year={2017},
month={Oct}
}
Results and models
Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
---|---|---|---|---|---|---|---|---|
R-50-FPN | caffe | 1x | 4.3 | 38.0 | 34.4 | config | model | log | |
R-50-FPN | pytorch | 1x | 4.4 | 16.1 | 38.2 | 34.7 | config | model | log |
R-50-FPN | pytorch | 2x | - | - | 39.2 | 35.4 | config | model | log |
R-101-FPN | caffe | 1x | 40.4 | 36.4 | config | model | log | ||
R-101-FPN | pytorch | 1x | 6.4 | 13.5 | 40.0 | 36.1 | config | model | log |
R-101-FPN | pytorch | 2x | - | - | 40.8 | 36.6 | config | model | log |
X-101-32x4d-FPN | pytorch | 1x | 7.6 | 11.3 | 41.9 | 37.5 | config | model | log |
X-101-32x4d-FPN | pytorch | 2x | - | - | 42.2 | 37.8 | config | model | log |
X-101-64x4d-FPN | pytorch | 1x | 10.7 | 8.0 | 42.8 | 38.4 | config | model | log |
X-101-64x4d-FPN | pytorch | 2x | - | - | 42.7 | 38.1 | config | model | log |
X-101-32x8d-FPN | pytorch | 1x | - | - | 42.8 | 38.3 |
Pre-trained Models
We also train some models with longer schedules and multi-scale training. The users could finetune them for downstream tasks.
Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
---|---|---|---|---|---|---|---|---|
R-50-FPN | caffe | 2x | 4.3 | 40.3 | 36.5 | config | model | log | |
R-50-FPN | caffe | 3x | 4.3 | 40.8 | 37.0 | config | model | log | |
X-101-32x8d-FPN | pytorch | 1x | - | 43.6 | 39.0 | |||
X-101-32x8d-FPN | pytorch | 3x | - | 44.0 | 39.3 |