Probabilistic Anchor Assignment with IoU Prediction for Object Detection
@inproceedings{paa-eccv2020,
title={Probabilistic Anchor Assignment with IoU Prediction for Object Detection},
author={Kim, Kang and Lee, Hee Seok},
booktitle = {ECCV},
year={2020}
}
Results and Models
We provide config files to reproduce the object detection results in the ECCV 2020 paper for Probabilistic Anchor Assignment with IoU Prediction for Object Detection.
Backbone | Lr schd | Mem (GB) | Score voting | box AP | Config | Download |
---|---|---|---|---|---|---|
R-50-FPN | 12e | 3.7 | True | 40.4 | config | model | log |
R-50-FPN | 12e | 3.7 | False | 40.2 | - | |
R-50-FPN | 18e | 3.7 | True | 41.4 | config | model | log |
R-50-FPN | 18e | 3.7 | False | 41.2 | - | |
R-50-FPN | 24e | 3.7 | True | 41.6 | config | model | log |
R-50-FPN | 36e | 3.7 | True | 43.3 | config | model | log |
R-101-FPN | 12e | 6.2 | True | 42.6 | config | model | log |
R-101-FPN | 12e | 6.2 | False | 42.4 | - | |
R-101-FPN | 24e | 6.2 | True | 43.5 | config | model | log |
R-101-FPN | 36e | 6.2 | True | 45.1 | config | model | log |
Note:
- We find that the performance is unstable with 1x setting and may fluctuate by about 0.2 mAP. We report the best results.