|
import argparse |
|
|
|
import torch |
|
from mmcv import Config, DictAction |
|
|
|
from mmdet.models import build_detector |
|
|
|
try: |
|
from mmcv.cnn import get_model_complexity_info |
|
except ImportError: |
|
raise ImportError('Please upgrade mmcv to >0.6.2') |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description='Train a detector') |
|
parser.add_argument('config', help='train config file path') |
|
parser.add_argument( |
|
'--shape', |
|
type=int, |
|
nargs='+', |
|
default=[1280, 800], |
|
help='input image size') |
|
parser.add_argument( |
|
'--cfg-options', |
|
nargs='+', |
|
action=DictAction, |
|
help='override some settings in the used config, the key-value pair ' |
|
'in xxx=yyy format will be merged into config file. If the value to ' |
|
'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' |
|
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' |
|
'Note that the quotation marks are necessary and that no white space ' |
|
'is allowed.') |
|
args = parser.parse_args() |
|
return args |
|
|
|
|
|
def main(): |
|
|
|
args = parse_args() |
|
|
|
if len(args.shape) == 1: |
|
input_shape = (3, args.shape[0], args.shape[0]) |
|
elif len(args.shape) == 2: |
|
input_shape = (3, ) + tuple(args.shape) |
|
else: |
|
raise ValueError('invalid input shape') |
|
|
|
cfg = Config.fromfile(args.config) |
|
if args.cfg_options is not None: |
|
cfg.merge_from_dict(args.cfg_options) |
|
|
|
if cfg.get('custom_imports', None): |
|
from mmcv.utils import import_modules_from_strings |
|
import_modules_from_strings(**cfg['custom_imports']) |
|
|
|
model = build_detector( |
|
cfg.model, |
|
train_cfg=cfg.get('train_cfg'), |
|
test_cfg=cfg.get('test_cfg')) |
|
if torch.cuda.is_available(): |
|
model.cuda() |
|
model.eval() |
|
|
|
if hasattr(model, 'forward_dummy'): |
|
model.forward = model.forward_dummy |
|
else: |
|
raise NotImplementedError( |
|
'FLOPs counter is currently not currently supported with {}'. |
|
format(model.__class__.__name__)) |
|
|
|
flops, params = get_model_complexity_info(model, input_shape) |
|
split_line = '=' * 30 |
|
print(f'{split_line}\nInput shape: {input_shape}\n' |
|
f'Flops: {flops}\nParams: {params}\n{split_line}') |
|
print('!!!Please be cautious if you use the results in papers. ' |
|
'You may need to check if all ops are supported and verify that the ' |
|
'flops computation is correct.') |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|