Spaces:
Running
Running
import os | |
from pathlib import Path | |
import sys | |
import time | |
__dir__ = os.path.dirname(os.path.abspath(__file__)) | |
sys.path.append(__dir__) | |
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '..'))) | |
import numpy as np | |
import torch | |
from torchvision import transforms as T | |
from torchvision.transforms import functional as F | |
from tools.engine import Config | |
from tools.utility import ArgsParser | |
from tools.utils.ckpt import load_ckpt | |
from tools.utils.logging import get_logger | |
from tools.utils.utility import get_image_file_list | |
from tools.infer_det import replace_batchnorm | |
logger = get_logger() | |
root_dir = Path(__file__).resolve().parent | |
DEFAULT_CFG_PATH_REC_SERVER = str(root_dir / | |
'../configs/rec/svtrv2/svtrv2_ch.yml') | |
DEFAULT_CFG_PATH_REC = str(root_dir / '../configs/rec/svtrv2/repsvtr_ch.yml') | |
DEFAULT_DICT_PATH_REC = str(root_dir / './utils/ppocr_keys_v1.txt') | |
MODEL_NAME_REC = './openocr_repsvtr_ch.pth' # 模型文件名称 | |
DOWNLOAD_URL_REC = 'https://github.com/Topdu/OpenOCR/releases/download/develop0.0.1/openocr_repsvtr_ch.pth' # 模型文件 URL | |
MODEL_NAME_REC_SERVER = './openocr_svtrv2_ch.pth' # 模型文件名称 | |
DOWNLOAD_URL_REC_SERVER = 'https://github.com/Topdu/OpenOCR/releases/download/develop0.0.1/openocr_svtrv2_ch.pth' # 模型文件 URL | |
def check_and_download_model(model_name: str, url: str): | |
""" | |
检查预训练模型是否存在,若不存在则从指定 URL 下载到固定缓存目录。 | |
Args: | |
model_name (str): 模型文件的名称,例如 "model.pt" | |
url (str): 模型文件的下载地址 | |
Returns: | |
str: 模型文件的完整路径 | |
""" | |
if os.path.exists(model_name): | |
return model_name | |
# 固定缓存路径为用户主目录下的 ".cache/openocr" | |
cache_dir = Path.home() / '.cache' / 'openocr' | |
model_path = cache_dir / model_name | |
# 如果模型文件已存在,直接返回路径 | |
if model_path.exists(): | |
logger.info(f'Model already exists at: {model_path}') | |
return str(model_path) | |
# 如果文件不存在,下载模型 | |
logger.info(f'Model not found. Downloading from {url}...') | |
# 创建缓存目录(如果不存在) | |
cache_dir.mkdir(parents=True, exist_ok=True) | |
try: | |
# 下载文件 | |
import urllib.request | |
with urllib.request.urlopen(url) as response, open(model_path, | |
'wb') as out_file: | |
out_file.write(response.read()) | |
logger.info(f'Model downloaded and saved at: {model_path}') | |
return str(model_path) | |
except Exception as e: | |
logger.error(f'Error downloading the model: {e}') | |
# 提示用户手动下载 | |
logger.error( | |
f'Unable to download the model automatically. ' | |
f'Please download the model manually from the following URL:\n{url}\n' | |
f'and save it to: {model_name} or {model_path}') | |
raise RuntimeError( | |
f'Failed to download the model. Please download it manually from {url} ' | |
f'and save it to {model_path}') from e | |
class RatioRecTVReisze(object): | |
def __init__(self, cfg): | |
self.max_ratio = cfg['Eval']['loader'].get('max_ratio', 12) | |
self.base_shape = cfg['Eval']['dataset'].get( | |
'base_shape', [[64, 64], [96, 48], [112, 40], [128, 32]]) | |
self.base_h = cfg['Eval']['dataset'].get('base_h', 32) | |
self.interpolation = T.InterpolationMode.BICUBIC | |
transforms = [] | |
transforms.extend([ | |
T.ToTensor(), | |
T.Normalize(0.5, 0.5), | |
]) | |
self.transforms = T.Compose(transforms) | |
self.ceil = cfg['Eval']['dataset'].get('ceil', False), | |
def __call__(self, data): | |
img = data['image'] | |
imgH = self.base_h | |
w, h = img.size | |
if self.ceil: | |
gen_ratio = int(float(w) / float(h)) + 1 | |
else: | |
gen_ratio = max(1, round(float(w) / float(h))) | |
ratio_resize = min(gen_ratio, self.max_ratio) | |
imgW, imgH = self.base_shape[ratio_resize - | |
1] if ratio_resize <= 4 else [ | |
self.base_h * | |
ratio_resize, self.base_h | |
] | |
resized_w = imgW | |
resized_image = F.resize(img, (imgH, resized_w), | |
interpolation=self.interpolation) | |
img = self.transforms(resized_image) | |
data['image'] = img | |
return data | |
def build_rec_process(cfg): | |
transforms = [] | |
ratio_resize_flag = True | |
for op in cfg['Eval']['dataset']['transforms']: | |
op_name = list(op)[0] | |
if 'Resize' in op_name: | |
ratio_resize_flag = False | |
if 'Label' in op_name: | |
continue | |
elif op_name in ['RecResizeImg']: | |
op[op_name]['infer_mode'] = True | |
elif op_name == 'KeepKeys': | |
if cfg['Architecture']['algorithm'] in ['SAR', 'RobustScanner']: | |
if 'valid_ratio' in op[op_name]['keep_keys']: | |
op[op_name]['keep_keys'] = ['image', 'valid_ratio'] | |
else: | |
op[op_name]['keep_keys'] = ['image'] | |
else: | |
op[op_name]['keep_keys'] = ['image'] | |
transforms.append(op) | |
return transforms, ratio_resize_flag | |
def set_device(device, numId=0): | |
if device == 'gpu' and torch.cuda.is_available(): | |
device = torch.device(f'cuda:{numId}') | |
else: | |
logger.info('GPU is not available, using CPU.') | |
device = torch.device('cpu') | |
return device | |
class OpenRecognizer(object): | |
def __init__(self, config=None, mode='mobile', numId=0): | |
""" | |
初始化方法。 | |
Args: | |
config (dict, optional): 配置信息。默认为None。 | |
mode (str, optional): 模式,'server' 或 'mobile'。默认为'mobile'。 | |
numId (int, optional): 设备编号。默认为0。 | |
Returns: | |
None | |
Raises: | |
无 | |
""" | |
if config is None: | |
if mode == 'server': | |
config = Config( | |
DEFAULT_CFG_PATH_REC_SERVER).cfg # server model | |
if not os.path.exists(config['Global']['pretrained_model']): | |
model_dir = check_and_download_model( | |
MODEL_NAME_REC_SERVER, DOWNLOAD_URL_REC_SERVER) | |
else: | |
config = Config(DEFAULT_CFG_PATH_REC).cfg # mobile model | |
if not os.path.exists(config['Global']['pretrained_model']): | |
model_dir = check_and_download_model( | |
MODEL_NAME_REC, DOWNLOAD_URL_REC) | |
config['Global']['pretrained_model'] = model_dir | |
config['Global']['character_dict_path'] = DEFAULT_DICT_PATH_REC | |
else: | |
if config['Architecture']['algorithm'] == 'SVTRv2_mobile': | |
if not os.path.exists(config['Global']['pretrained_model']): | |
config['Global'][ | |
'pretrained_model'] = check_and_download_model( | |
MODEL_NAME_REC, DOWNLOAD_URL_REC) | |
config['Global']['character_dict_path'] = DEFAULT_DICT_PATH_REC | |
elif config['Architecture']['algorithm'] == 'SVTRv2_server': | |
if not os.path.exists(config['Global']['pretrained_model']): | |
config['Global'][ | |
'pretrained_model'] = check_and_download_model( | |
MODEL_NAME_REC_SERVER, DOWNLOAD_URL_REC_SERVER) | |
config['Global']['character_dict_path'] = DEFAULT_DICT_PATH_REC | |
global_config = config['Global'] | |
self.cfg = config | |
if global_config['pretrained_model'] is None: | |
global_config[ | |
'pretrained_model'] = global_config['output_dir'] + '/best.pth' | |
# build post process | |
from openrec.modeling import build_model as build_rec_model | |
from openrec.postprocess import build_post_process | |
from openrec.preprocess import create_operators, transform | |
self.transform = transform | |
self.post_process_class = build_post_process(config['PostProcess'], | |
global_config) | |
char_num = self.post_process_class.get_character_num() | |
config['Architecture']['Decoder']['out_channels'] = char_num | |
# print(char_num) | |
self.model = build_rec_model(config['Architecture']) | |
load_ckpt(self.model, config) | |
# exit(0) | |
self.device = set_device(global_config['device'], numId=numId) | |
self.model.eval() | |
replace_batchnorm(self.model.encoder) | |
self.model.to(device=self.device) | |
transforms, ratio_resize_flag = build_rec_process(self.cfg) | |
global_config['infer_mode'] = True | |
self.ops = create_operators(transforms, global_config) | |
if ratio_resize_flag: | |
ratio_resize = RatioRecTVReisze(cfg=self.cfg) | |
self.ops.insert(-1, ratio_resize) | |
def __call__(self, | |
img_path=None, | |
img_numpy_list=None, | |
img_numpy=None, | |
batch_num=1): | |
""" | |
调用函数,处理输入图像,并返回识别结果。 | |
Args: | |
img_path (str, optional): 图像文件的路径。默认为 None。 | |
img_numpy_list (list, optional): 包含多个图像 numpy 数组的列表。默认为 None。 | |
img_numpy (numpy.ndarray, optional): 单个图像的 numpy 数组。默认为 None。 | |
batch_num (int, optional): 每次处理的图像数量。默认为 1。 | |
Returns: | |
list: 包含识别结果的列表,每个元素为一个字典,包含文件路径(如果有的话)、文本、分数和延迟时间。 | |
Raises: | |
Exception: 如果没有提供图像路径或 numpy 数组,则引发异常。 | |
""" | |
if img_numpy is not None: | |
img_numpy_list = [img_numpy] | |
num_img = 1 | |
elif img_path is not None: | |
img_path = get_image_file_list(img_path) | |
num_img = len(img_path) | |
elif img_numpy_list is not None: | |
num_img = len(img_numpy_list) | |
else: | |
raise Exception('No input image path or numpy array.') | |
results = [] | |
for start_idx in range(0, num_img, batch_num): | |
batch_data = [] | |
batch_others = [] | |
batch_file_names = [] | |
max_width, max_height = 0, 0 | |
# Prepare batch data | |
for img_idx in range(start_idx, min(start_idx + batch_num, | |
num_img)): | |
if img_numpy_list is not None: | |
img = img_numpy_list[img_idx] | |
data = {'image': img} | |
elif img_path is not None: | |
file_name = img_path[img_idx] | |
with open(file_name, 'rb') as f: | |
img = f.read() | |
data = {'image': img} | |
data = self.transform(data, self.ops[:1]) | |
batch_file_names.append(file_name) | |
batch = self.transform(data, self.ops[1:]) | |
others = None | |
if self.cfg['Architecture']['algorithm'] in [ | |
'SAR', 'RobustScanner' | |
]: | |
valid_ratio = np.expand_dims(batch[-1], axis=0) | |
batch_others.append(valid_ratio) | |
# others = [torch.from_numpy(valid_ratio).to(device=self.device)] | |
resized_image = batch[0] | |
h, w = resized_image.shape[-2:] | |
max_width = max(max_width, w) | |
max_height = max(max_height, h) | |
batch_data.append(batch[0]) | |
padded_batch_data = [] | |
for resized_image in batch_data: | |
padded_image = np.zeros([1, 3, max_height, max_width], | |
dtype=np.float32) | |
h, w = resized_image.shape[-2:] | |
# Apply padding (bottom-right padding) | |
padded_image[:, :, :h, : | |
w] = resized_image # 0 is typically used for padding | |
padded_batch_data.append(padded_image) | |
if batch_others: | |
others = np.concatenate(batch_others, axis=0) | |
else: | |
others = None | |
images = np.concatenate(padded_batch_data, axis=0) | |
images = torch.from_numpy(images).to(device=self.device) | |
with torch.no_grad(): | |
t_start = time.time() | |
preds = self.model(images, others) | |
t_cost = time.time() - t_start | |
post_results = self.post_process_class(preds) | |
for i, post_result in enumerate(post_results): | |
if img_path is not None: | |
info = { | |
'file': batch_file_names[i], | |
'text': post_result[0], | |
'score': post_result[1], | |
'elapse': t_cost | |
} | |
else: | |
info = { | |
'text': post_result[0], | |
'score': post_result[1], | |
'elapse': t_cost | |
} | |
results.append(info) | |
return results | |
def main(cfg): | |
model = OpenRecognizer(cfg) | |
save_res_path = cfg['Global']['output_dir'] | |
if not os.path.exists(save_res_path): | |
os.makedirs(save_res_path) | |
t_sum = 0 | |
sample_num = 0 | |
max_len = cfg['Global']['max_text_length'] | |
text_len_time = [0 for _ in range(max_len)] | |
text_len_num = [0 for _ in range(max_len)] | |
sample_num = 0 | |
with open(save_res_path + '/rec_results.txt', 'wb') as fout: | |
for file in get_image_file_list(cfg['Global']['infer_img']): | |
preds_result = model(img_path=file, batch_num=1)[0] | |
rec_text = preds_result['text'] | |
score = preds_result['score'] | |
t_cost = preds_result['elapse'] | |
info = rec_text + '\t' + str(score) | |
text_len_num[min(max_len - 1, len(rec_text))] += 1 | |
text_len_time[min(max_len - 1, len(rec_text))] += t_cost | |
logger.info( | |
f'{sample_num} {file}\t result: {info}, time cost: {t_cost}') | |
otstr = file + '\t' + info + '\n' | |
t_sum += t_cost | |
fout.write(otstr.encode()) | |
sample_num += 1 | |
print(text_len_num) | |
w_avg_t_cost = [] | |
for l_t_cost, l_num in zip(text_len_time, text_len_num): | |
if l_num != 0: | |
w_avg_t_cost.append(l_t_cost / l_num) | |
print(w_avg_t_cost) | |
w_avg_t_cost = sum(w_avg_t_cost) / len(w_avg_t_cost) | |
logger.info( | |
f'Sample num: {sample_num}, Weighted Avg time cost: {t_sum/sample_num}, Avg time cost: {w_avg_t_cost}' | |
) | |
logger.info('success!') | |
if __name__ == '__main__': | |
FLAGS = ArgsParser().parse_args() | |
cfg = Config(FLAGS.config) | |
FLAGS = vars(FLAGS) | |
opt = FLAGS.pop('opt') | |
cfg.merge_dict(FLAGS) | |
cfg.merge_dict(opt) | |
main(cfg.cfg) | |