Spaces:
Build error
Build error
import dataclasses | |
from enum import auto, Enum | |
from typing import List, Tuple | |
import io | |
import base64 | |
import os | |
from PIL import Image | |
import copy | |
IMG_FLAG = '<image>' | |
class SeparatorStyle(Enum): | |
"""Different separator style.""" | |
SINGLE = auto() | |
TWO = auto() | |
MPT = auto() | |
PLAIN = auto() | |
LLAMA_2 = auto() | |
def decode_image(encoded_image: str) -> Image: | |
decoded_bytes = base64.b64decode(encoded_image.encode('utf-8')) | |
buffer = io.BytesIO(decoded_bytes) | |
image = Image.open(buffer) | |
return image | |
def encode_image(image: Image.Image, format: str = 'PNG') -> str: | |
with io.BytesIO() as buffer: | |
image.save(buffer, format=format) | |
encoded_image = base64.b64encode(buffer.getvalue()).decode('utf-8') | |
return encoded_image | |
class Conversation: | |
"""A class that keeps all conversation history.""" | |
system: str | |
roles: List[str] | |
messages: List[dict] # multi-turn -> user & assistant -> {'images': [PIL.Image,], 'text': str} | |
offset: int | |
sep_style: SeparatorStyle = SeparatorStyle.SINGLE | |
sep: str = "###" | |
sep2: str = None | |
version: str = "Unknown" | |
skip_next: bool = False | |
def get_prompt(self): | |
messages = copy.deepcopy(self.messages) | |
if self.sep_style == SeparatorStyle.SINGLE: | |
if self.system is None or self.system == '': | |
text = '' | |
else: | |
text = self.system + self.sep | |
images = [] | |
for message in messages: | |
text += message['role'] + ": " + message['message']['text'] + self.sep | |
for image_path in message['message']['images']: | |
image = Image.open(image_path).resize((256, 256)) | |
image_base64 = encode_image(image) | |
images.append(image_base64) | |
text += self.roles[1] + ":" | |
elif self.sep_style == SeparatorStyle.LLAMA_2: | |
b_token = "[INST] " | |
e_token = " [/INST]" | |
if self.system is None or self.system == '': | |
text = '' | |
else: | |
text = f"<<SYS>>\n{self.system}\n<</SYS>>\n\n" | |
images = [] | |
for idx, message in enumerate(messages): | |
# text += message['role'] + ": " + message['message']['text'] + self.sep | |
if idx % 2 == 0: | |
text += b_token + message['message']['text'] + e_token + self.sep | |
else: | |
text += message['message']['text'] + self.sep | |
for image_path in message['message']['images']: | |
image = Image.open(image_path) | |
image_base64 = encode_image(image) | |
images.append(image_base64) | |
else: | |
raise NotImplementedError | |
return {'text': text, 'images': images} | |
# def update_image_ids(self, images_ids): | |
# image_count = 0 | |
# for message in self.messages: | |
# for idx in range(len(message['message']['images_ids'])): | |
# if message['message']["images_ids"][idx] is None: | |
# message['message']["images_ids"][idx] = images_ids[image_count] | |
# image_count += 1 | |
# assert len(images_ids) == image_count, print(len(images_ids), image_count) | |
def append_message(self, role, message): | |
self.messages.append([role, message]) | |
def to_gradio_chatbot(self): | |
dialog = [] | |
for i, single_turn in enumerate(self.messages[self.offset:]): | |
single_turn = single_turn['message'] | |
text_list = single_turn['text'].split(IMG_FLAG) | |
assert len(text_list) == len(single_turn['images']) + 1, print(text_list, len(single_turn['images'])) | |
message = '' | |
for image_idx in range(len(single_turn['images'])): | |
# image = single_turn['images'][image_idx] | |
# image_base64 = encode_image(image) | |
# image_str = f'<img src="data:image/png;base64,{image_base64}" alt="user upload image" />' | |
image_path = single_turn['images'][image_idx] | |
if image_path == '': | |
message += text_list[image_idx] + '<corrupt_image>' | |
else: | |
message += text_list[image_idx] + f'![](file={image_path})' | |
message += text_list[-1] | |
if i % 2 == 0: | |
dialog.append([message, None]) | |
else: | |
dialog[-1][-1] = message | |
return dialog | |
def copy(self): | |
return Conversation(system=self.system, | |
roles=self.roles, | |
messages=copy.deepcopy(self.messages), | |
offset=self.offset, | |
sep_style=self.sep_style, | |
sep=self.sep, | |
sep2=self.sep2, | |
version=self.version) | |
def dict(self): | |
messages = copy.deepcopy(self.messages) | |
for message in messages: | |
for i in range(len(message['message']['images'])): | |
message['message']['images'][i] = os.path.basename(message['message']['images'][i]) | |
return { | |
"system": self.system, | |
"roles": self.roles, | |
"messages": messages, | |
"offset": self.offset, | |
"sep": self.sep, | |
"sep2": self.sep2, | |
} | |
conv_seed_vicuna = Conversation( | |
system="", | |
roles=("USER", "ASSISTANT"), | |
version="v2", | |
messages=[], | |
offset=0, | |
sep_style=SeparatorStyle.SINGLE, | |
sep='\n', | |
) | |
conv_seed_vicuna_system = Conversation( | |
system="A chat between a curious user and an artificial intelligence assistant. ", | |
roles=("USER", "ASSISTANT"), | |
version="v2", | |
messages=[], | |
offset=0, | |
sep_style=SeparatorStyle.SINGLE, | |
sep='\n', | |
) | |
conv_seed_llama2 = Conversation( | |
system="", | |
roles=("[INST]", "[/INST]"), | |
version="v2", | |
messages=[], | |
offset=0, | |
sep_style=SeparatorStyle.LLAMA_2, | |
sep='\n', | |
) | |