Spaces:
Sleeping
Sleeping
import os | |
import librosa | |
import commons | |
import re | |
import numpy as np | |
import torch | |
import xml.etree.ElementTree as ET | |
import config | |
import soundfile as sf | |
from torch import no_grad, LongTensor, inference_mode, FloatTensor | |
from io import BytesIO | |
from graiax import silkcoder | |
from utils.nlp import sentence_split | |
from mel_processing import spectrogram_torch | |
from text import text_to_sequence | |
from models import SynthesizerTrn | |
from utils import utils | |
from logger import logger | |
# torch.set_num_threads(1) # 设置torch线程为1 | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
class vits: | |
def __init__(self, model, config, model_=None, model_type=None): | |
self.model_type = model_type | |
self.hps_ms = utils.get_hparams_from_file(config) | |
self.n_speakers = getattr(self.hps_ms.data, 'n_speakers', 0) | |
self.n_symbols = len(getattr(self.hps_ms, 'symbols', [])) | |
self.speakers = getattr(self.hps_ms, 'speakers', ['0']) | |
self.use_f0 = getattr(self.hps_ms.data, 'use_f0', False) | |
self.emotion_embedding = getattr(self.hps_ms.data, 'emotion_embedding', | |
getattr(self.hps_ms.model, 'emotion_embedding', False)) | |
self.bert_embedding = getattr(self.hps_ms.data, 'bert_embedding', | |
getattr(self.hps_ms.model, 'bert_embedding', False)) | |
self.hps_ms.model.emotion_embedding = self.emotion_embedding | |
self.hps_ms.model.bert_embedding = self.bert_embedding | |
self.net_g_ms = SynthesizerTrn( | |
self.n_symbols, | |
self.hps_ms.data.filter_length // 2 + 1, | |
self.hps_ms.train.segment_size // self.hps_ms.data.hop_length, | |
n_speakers=self.n_speakers, | |
**self.hps_ms.model) | |
_ = self.net_g_ms.eval() | |
# load model | |
self.load_model(model, model_) | |
def load_model(self, model, model_=None): | |
utils.load_checkpoint(model, self.net_g_ms) | |
self.net_g_ms.to(device) | |
if self.model_type == "hubert": | |
self.hubert = model_ | |
elif self.model_type == "w2v2": | |
self.emotion_reference = model_ | |
def get_cleaned_text(self, text, hps, cleaned=False): | |
if cleaned: | |
text_norm = text_to_sequence(text, hps.symbols, []) | |
else: | |
if self.bert_embedding: | |
text_norm, char_embed = text_to_sequence(text, hps.symbols, hps.data.text_cleaners, | |
bert_embedding=self.bert_embedding) | |
text_norm = LongTensor(text_norm) | |
return text_norm, char_embed | |
else: | |
text_norm = text_to_sequence(text, hps.symbols, hps.data.text_cleaners) | |
if hps.data.add_blank: | |
text_norm = commons.intersperse(text_norm, 0) | |
text_norm = LongTensor(text_norm) | |
return text_norm | |
def get_cleaner(self): | |
return getattr(self.hps_ms.data, 'text_cleaners', [None])[0] | |
def get_speakers(self, escape=False): | |
return self.speakers | |
def infer(self, params): | |
with no_grad(): | |
x_tst = params.get("stn_tst").unsqueeze(0).to(device) | |
x_tst_lengths = LongTensor([params.get("stn_tst").size(0)]).to(device) | |
x_tst_prosody = torch.FloatTensor(params.get("char_embeds")).unsqueeze(0).to( | |
device) if self.bert_embedding else None | |
sid = params.get("sid").to(device) if not self.bert_embedding else None | |
emotion = params.get("emotion").to(device) if self.emotion_embedding else None | |
audio = self.net_g_ms.infer(x=x_tst, | |
x_lengths=x_tst_lengths, | |
sid=sid, | |
noise_scale=params.get("noise_scale"), | |
noise_scale_w=params.get("noise_scale_w"), | |
length_scale=params.get("length_scale"), | |
emotion_embedding=emotion, | |
bert=x_tst_prosody)[0][0, 0].data.float().cpu().numpy() | |
torch.cuda.empty_cache() | |
return audio | |
def get_infer_param(self, length_scale, noise_scale, noise_scale_w, text=None, speaker_id=None, audio_path=None, | |
emotion=None, cleaned=False, f0_scale=1): | |
emo = None | |
char_embeds = None | |
if self.model_type != "hubert": | |
if self.bert_embedding: | |
stn_tst, char_embeds = self.get_cleaned_text(text, self.hps_ms, cleaned=cleaned) | |
sid = None | |
else: | |
stn_tst = self.get_cleaned_text(text, self.hps_ms, cleaned=cleaned) | |
sid = LongTensor([speaker_id]) | |
if self.model_type == "w2v2": | |
# if emotion_reference.endswith('.npy'): | |
# emotion = np.load(emotion_reference) | |
# emotion = FloatTensor(emotion).unsqueeze(0) | |
# else: | |
# audio16000, sampling_rate = librosa.load( | |
# emotion_reference, sr=16000, mono=True) | |
# emotion = self.w2v2(audio16000, sampling_rate)[ | |
# 'hidden_states'] | |
# emotion_reference = re.sub( | |
# r'\..*$', '', emotion_reference) | |
# np.save(emotion_reference, emotion.squeeze(0)) | |
# emotion = FloatTensor(emotion) | |
emo = torch.FloatTensor(self.emotion_reference[emotion]).unsqueeze(0) | |
elif self.model_type == "hubert": | |
if self.use_f0: | |
audio, sampling_rate = librosa.load(audio_path, sr=self.hps_ms.data.sampling_rate, mono=True) | |
audio16000 = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000) | |
else: | |
audio16000, sampling_rate = librosa.load(audio_path, sr=16000, mono=True) | |
with inference_mode(): | |
units = self.hubert.units(FloatTensor(audio16000).unsqueeze(0).unsqueeze(0)).squeeze(0).numpy() | |
if self.use_f0: | |
f0 = librosa.pyin(audio, | |
sr=sampling_rate, | |
fmin=librosa.note_to_hz('C0'), | |
fmax=librosa.note_to_hz('C7'), | |
frame_length=1780)[0] | |
target_length = len(units[:, 0]) | |
f0 = np.nan_to_num(np.interp(np.arange(0, len(f0) * target_length, len(f0)) / target_length, | |
np.arange(0, len(f0)), f0)) * f0_scale | |
units[:, 0] = f0 / 10 | |
stn_tst = FloatTensor(units) | |
sid = LongTensor([speaker_id]) | |
params = {"length_scale": length_scale, "noise_scale": noise_scale, | |
"noise_scale_w": noise_scale_w, "stn_tst": stn_tst, | |
"sid": sid, "emotion": emo, "char_embeds": char_embeds} | |
return params | |
def get_tasks(self, voice): | |
text = voice.get("text", None) | |
speaker_id = voice.get("id", 0) | |
length = voice.get("length", 1) | |
noise = voice.get("noise", 0.667) | |
noisew = voice.get("noisew", 0.8) | |
max = voice.get("max", 50) | |
lang = voice.get("lang", "auto") | |
speaker_lang = voice.get("speaker_lang", None) | |
audio_path = voice.get("audio_path", None) | |
emotion = voice.get("emotion", 0) | |
# 去除所有多余的空白字符 | |
if text is not None: text = re.sub(r'\s+', ' ', text).strip() | |
tasks = [] | |
if self.model_type == "vits": | |
sentence_list = sentence_split(text, max, lang, speaker_lang) | |
for sentence in sentence_list: | |
params = self.get_infer_param(text=sentence, speaker_id=speaker_id, length_scale=length, | |
noise_scale=noise, noise_scale_w=noisew) | |
tasks.append(params) | |
elif self.model_type == "hubert": | |
params = self.get_infer_param(speaker_id=speaker_id, length_scale=length, noise_scale=noise, | |
noise_scale_w=noisew, audio_path=audio_path) | |
tasks.append(params) | |
elif self.model_type == "w2v2": | |
sentence_list = sentence_split(text, max, lang, speaker_lang) | |
for sentence in sentence_list: | |
params = self.get_infer_param(text=sentence, speaker_id=speaker_id, length_scale=length, | |
noise_scale=noise, noise_scale_w=noisew, emotion=emotion) | |
tasks.append(params) | |
return tasks | |
def get_audio(self, voice, auto_break=False): | |
tasks = self.get_tasks(voice) | |
# 停顿0.75s,避免语音分段合成再拼接后的连接突兀 | |
brk = np.zeros(int(0.75 * 22050), dtype=np.int16) | |
audios = [] | |
for task in tasks: | |
if auto_break: | |
chunk = np.concatenate((self.infer(task), brk), axis=0) | |
else: | |
chunk = self.infer(task) | |
audios.append(chunk) | |
audio = np.concatenate(audios, axis=0) | |
return audio | |
def get_stream_audio(self, voice, auto_break=False): | |
tasks = self.get_tasks(voice) | |
brk = np.zeros(int(0.75 * 22050), dtype=np.int16) | |
for task in tasks: | |
if auto_break: | |
chunk = np.concatenate((self.infer(task), brk), axis=0) | |
else: | |
chunk = self.infer(task) | |
yield chunk | |
def voice_conversion(self, voice): | |
audio_path = voice.get("audio_path") | |
original_id = voice.get("original_id") | |
target_id = voice.get("target_id") | |
audio = utils.load_audio_to_torch( | |
audio_path, self.hps_ms.data.sampling_rate) | |
y = audio.unsqueeze(0) | |
spec = spectrogram_torch(y, self.hps_ms.data.filter_length, | |
self.hps_ms.data.sampling_rate, self.hps_ms.data.hop_length, | |
self.hps_ms.data.win_length, | |
center=False) | |
spec_lengths = LongTensor([spec.size(-1)]) | |
sid_src = LongTensor([original_id]) | |
with no_grad(): | |
sid_tgt = LongTensor([target_id]) | |
audio = self.net_g_ms.voice_conversion(spec.to(device), | |
spec_lengths.to(device), | |
sid_src=sid_src.to(device), | |
sid_tgt=sid_tgt.to(device))[0][0, 0].data.cpu().float().numpy() | |
torch.cuda.empty_cache() | |
return audio | |
class TTS: | |
def __init__(self, voice_obj, voice_speakers, w2v2_emotion_count=0): | |
self._voice_obj = voice_obj | |
self._voice_speakers = voice_speakers | |
self._strength_dict = {"x-weak": 0.25, "weak": 0.5, "Medium": 0.75, "Strong": 1, "x-strong": 1.25} | |
self._speakers_count = sum([len(self._voice_speakers[i]) for i in self._voice_speakers]) | |
self._vits_speakers_count = len(self._voice_speakers["VITS"]) | |
self._hubert_speakers_count = len(self._voice_speakers["HUBERT-VITS"]) | |
self._w2v2_speakers_count = len(self._voice_speakers["W2V2-VITS"]) | |
self._w2v2_emotion_count = w2v2_emotion_count | |
self.dem = None | |
# Initialization information | |
self.logger = logger | |
self.logger.info(f"torch:{torch.__version__} cuda_available:{torch.cuda.is_available()}") | |
self.logger.info(f'device:{device} device.type:{device.type}') | |
if getattr(config, "DIMENSIONAL_EMOTION_MODEL", None) != None: | |
try: | |
import audonnx | |
root = os.path.dirname(config.DIMENSIONAL_EMOTION_MODEL) | |
model_file = config.DIMENSIONAL_EMOTION_MODEL | |
self.dem = audonnx.load(root=root, model_file=model_file) | |
except Exception as e: | |
self.logger.warning(f"Load DIMENSIONAL_EMOTION_MODEL failed {e}") | |
if self._vits_speakers_count != 0: self.logger.info(f"[VITS] {self._vits_speakers_count} speakers") | |
if self._hubert_speakers_count != 0: self.logger.info(f"[hubert] {self._hubert_speakers_count} speakers") | |
if self._w2v2_speakers_count != 0: self.logger.info(f"[w2v2] {self._w2v2_speakers_count} speakers") | |
self.logger.info(f"{self._speakers_count} speakers in total") | |
if self._speakers_count == 0: | |
self.logger.warning(f"No model was loaded") | |
def voice_speakers(self): | |
return self._voice_speakers | |
def speakers_count(self): | |
return self._speakers_count | |
def vits_speakers_count(self): | |
return self._vits_speakers_count | |
def hubert_speakers_count(self): | |
return self._hubert_speakers_count | |
def w2v2_speakers_count(self): | |
return self._w2v2_speakers_count | |
def encode(self, sampling_rate, audio, format): | |
with BytesIO() as f: | |
if format.upper() == 'OGG': | |
sf.write(f, audio, sampling_rate, format="ogg") | |
return BytesIO(f.getvalue()) | |
elif format.upper() == 'SILK': | |
sf.write(f, audio, sampling_rate, format="wav") | |
return BytesIO(silkcoder.encode(f)) | |
elif format.upper() == 'MP3': | |
sf.write(f, audio, sampling_rate, format="mp3") | |
return BytesIO(f.getvalue()) | |
elif format.upper() == 'WAV': | |
sf.write(f, audio, sampling_rate, format="wav") | |
return BytesIO(f.getvalue()) | |
elif format.upper() == 'FLAC': | |
sf.write(f, audio, sampling_rate, format="flac") | |
return BytesIO(f.getvalue()) | |
else: | |
raise ValueError(f"Unsupported format:{format}") | |
def convert_time_string(self, time_string): | |
time_value = float(re.findall(r'\d+\.?\d*', time_string)[0]) | |
time_unit = re.findall(r'[a-zA-Z]+', time_string)[0].lower() | |
if time_unit.upper() == 'MS': | |
return time_value / 1000 | |
elif time_unit.upper() == 'S': | |
return time_value | |
elif time_unit.upper() == 'MIN': | |
return time_value * 60 | |
elif time_unit.upper() == 'H': | |
return time_value * 3600 | |
elif time_unit.upper() == 'D': | |
return time_value * 24 * 3600 # 不会有人真写D吧? | |
else: | |
raise ValueError("Unsupported time unit: {}".format(time_unit)) | |
def generate_audio_chunks(self, audio): | |
chunk_size = 4096 | |
while True: | |
chunk = audio.read(chunk_size) | |
if not chunk: | |
break | |
yield chunk | |
def parse_ssml(self, ssml): | |
root = ET.fromstring(ssml) | |
format = root.attrib.get("format", "wav") | |
voice_tasks = [] | |
brk_count = 0 | |
strength_dict = {"x-weak": 0.25, "weak": 0.5, "Medium": 0.75, "Strong": 1, "x-strong": 1.25} | |
for element in root.iter(): | |
if element.tag == "voice": | |
id = int(element.attrib.get("id", root.attrib.get("id", config.ID))) | |
lang = element.attrib.get("lang", root.attrib.get("lang", config.LANG)) | |
length = float(element.attrib.get("length", root.attrib.get("length", config.LENGTH))) | |
noise = float(element.attrib.get("noise", root.attrib.get("noise", config.NOISE))) | |
noisew = float(element.attrib.get("noisew", root.attrib.get("noisew", config.NOISEW))) | |
max = int(element.attrib.get("max", root.attrib.get("max", "0"))) | |
# 不填写默认就是vits | |
model = element.attrib.get("model", root.attrib.get("model", "vits")) | |
# w2v2-vits/emotion-vits才有emotion | |
emotion = int(element.attrib.get("emotion", root.attrib.get("emotion", 0))) | |
voice_element = ET.tostring(element, encoding='unicode') | |
pattern_voice = r'<voice.*?>(.*?)</voice>' | |
pattern_break = r'<break\s*?(.*?)\s*?/>' | |
matches_voice = re.findall(pattern_voice, voice_element)[0] | |
matches_break = re.split(pattern_break, matches_voice) | |
for match in matches_break: | |
strength = re.search(r'\s*strength\s*=\s*[\'\"](.*?)[\'\"]', match) | |
time = re.search(r'\s*time\s*=\s*[\'\"](.*?)[\'\"]', match) | |
# break标签 strength属性 | |
if strength: | |
brk = strength_dict[strength.group(1)] | |
voice_tasks.append({"break": brk}) | |
brk_count += 1 | |
# break标签 time属性 | |
elif time: | |
brk = self.convert_time_string(time.group(1)) | |
voice_tasks.append({"break": brk}) | |
brk_count += 1 | |
# break标签 为空说明只写了break,默认停顿0.75s | |
elif match == "": | |
voice_tasks.append({"break": 0.75}) | |
brk_count += 1 | |
# voice标签中除了break剩下的就是文本 | |
else: | |
voice_tasks.append({"id": id, | |
"text": match, | |
"lang": lang, | |
"length": length, | |
"noise": noise, | |
"noisew": noisew, | |
"max": max, | |
"model": model, | |
"emotion": emotion | |
}) | |
# 分段末尾停顿0.75s | |
voice_tasks.append({"break": 0.75}) | |
elif element.tag == "break": | |
# brk_count大于0说明voice标签中有break | |
if brk_count > 0: | |
brk_count -= 1 | |
continue | |
brk = strength_dict.get(element.attrib.get("strength"), | |
self.convert_time_string(element.attrib.get("time", "750ms"))) | |
voice_tasks.append({"break": brk}) | |
for i in voice_tasks: | |
self.logger.debug(i) | |
return voice_tasks, format | |
def create_ssml_infer_task(self, voice_tasks, format, fname): | |
audios = [] | |
for voice in voice_tasks: | |
if voice.get("break"): | |
audios.append(np.zeros(int(voice.get("break") * 22050), dtype=np.int16)) | |
else: | |
model = voice.get("model").upper() | |
if model != "VITS" and model != "W2V2-VITS" and model != "EMOTION-VITS": | |
raise ValueError(f"Unsupported model: {voice.get('model')}") | |
voice_obj = self._voice_obj[model][voice.get("id")][1] | |
voice["id"] = self._voice_obj[model][voice.get("id")][0] | |
audio = voice_obj.get_audio(voice) | |
audios.append(audio) | |
audio = np.concatenate(audios, axis=0) | |
encoded_audio = self.encode(voice_obj.hps_ms.data.sampling_rate, audio, format) | |
if getattr(config, "SAVE_AUDIO", False): | |
path = f"{config.CACHE_PATH}/{fname}" | |
utils.save_audio(encoded_audio.getvalue(), path) | |
return encoded_audio | |
def vits_infer(self, voice, fname): | |
format = voice.get("format", "wav") | |
voice_obj = self._voice_obj["VITS"][voice.get("id")][1] | |
voice["id"] = self._voice_obj["VITS"][voice.get("id")][0] | |
sampling_rate = voice_obj.hps_ms.data.sampling_rate | |
audio = voice_obj.get_audio(voice, auto_break=True) | |
encoded_audio = self.encode(sampling_rate, audio, format) | |
if getattr(config, "SAVE_AUDIO", False): | |
path = f"{config.CACHE_PATH}/{fname}" | |
utils.save_audio(encoded_audio.getvalue(), path) | |
return encoded_audio | |
def stream_vits_infer(self, voice, fname): | |
format = voice.get("format", "wav") | |
voice_obj = self._voice_obj["VITS"][voice.get("id")][1] | |
voice["id"] = self._voice_obj["VITS"][voice.get("id")][0] | |
sampling_rate = voice_obj.hps_ms.data.sampling_rate | |
genertator = voice_obj.get_stream_audio(voice, auto_break=True) | |
audio = BytesIO() | |
for chunk in genertator: | |
encoded_audio = self.encode(sampling_rate, chunk, format) | |
for encoded_audio_chunk in self.generate_audio_chunks(encoded_audio): | |
yield encoded_audio_chunk | |
if getattr(config, "SAVE_AUDIO", False): | |
audio.write(encoded_audio.getvalue()) | |
if getattr(config, "SAVE_AUDIO", False): | |
path = f"{config.CACHE_PATH}/{fname}" | |
utils.save_audio(audio.getvalue(), path) | |
def hubert_vits_infer(self, voice, fname): | |
format = voice.get("format", "wav") | |
voice_obj = self._voice_obj["HUBERT-VITS"][voice.get("id")][1] | |
voice["id"] = self._voice_obj["HUBERT-VITS"][voice.get("id")][0] | |
sampling_rate = voice_obj.hps_ms.data.sampling_rate | |
audio = voice_obj.get_audio(voice) | |
encoded_audio = self.encode(sampling_rate, audio, format) | |
if getattr(config, "SAVE_AUDIO", False): | |
path = f"{config.CACHE_PATH}/{fname}" | |
utils.save_audio(encoded_audio.getvalue(), path) | |
return encoded_audio | |
def w2v2_vits_infer(self, voice, fname): | |
format = voice.get("format", "wav") | |
voice_obj = self._voice_obj["W2V2-VITS"][voice.get("id")][1] | |
voice["id"] = self._voice_obj["W2V2-VITS"][voice.get("id")][0] | |
sampling_rate = voice_obj.hps_ms.data.sampling_rate | |
audio = voice_obj.get_audio(voice, auto_break=True) | |
encoded_audio = self.encode(sampling_rate, audio, format) | |
if getattr(config, "SAVE_AUDIO", False): | |
path = f"{config.CACHE_PATH}/{fname}" | |
utils.save_audio(encoded_audio.getvalue(), path) | |
return encoded_audio | |
def vits_voice_conversion(self, voice, fname): | |
original_id = voice.get("original_id") | |
target_id = voice.get("target_id") | |
format = voice.get("format") | |
original_id_obj = int(self._voice_obj["VITS"][original_id][2]) | |
target_id_obj = int(self._voice_obj["VITS"][target_id][2]) | |
if original_id_obj != target_id_obj: | |
raise ValueError(f"speakers are in diffrent VITS Model") | |
voice["original_id"] = int(self._voice_obj["VITS"][original_id][0]) | |
voice["target_id"] = int(self._voice_obj["VITS"][target_id][0]) | |
voice_obj = self._voice_obj["VITS"][original_id][1] | |
sampling_rate = voice_obj.hps_ms.data.sampling_rate | |
audio = voice_obj.voice_conversion(voice) | |
encoded_audio = self.encode(sampling_rate, audio, format) | |
if getattr(config, "SAVE_AUDIO", False): | |
path = f"{config.CACHE_PATH}/{fname}" | |
utils.save_audio(encoded_audio.getvalue(), path) | |
return encoded_audio | |
def get_dimensional_emotion_npy(self, audio): | |
if self.dem is None: | |
raise ValueError(f"Please configure DIMENSIONAL_EMOTION_MODEL path in config.py") | |
audio16000, sampling_rate = librosa.load(audio, sr=16000, mono=True) | |
emotion = self.dem(audio16000, sampling_rate)['hidden_states'] | |
emotion_npy = BytesIO() | |
np.save(emotion_npy, emotion.squeeze(0)) | |
emotion_npy.seek(0) | |
return emotion_npy | |