wzry-vits-api / bert_vits2 /bert_vits2.py
Artrajz's picture
update
b0f5083
import numpy as np
import torch
from bert_vits2 import commons
from bert_vits2 import utils as bert_vits2_utils
from bert_vits2.models import SynthesizerTrn
from bert_vits2.text import *
from bert_vits2.text.cleaner import clean_text
from bert_vits2.utils import process_legacy_versions
from contants import ModelType
from utils import classify_language, get_hparams_from_file, lang_dict
from utils.sentence import sentence_split_and_markup, cut
class Bert_VITS2:
def __init__(self, model, config, device=torch.device("cpu"), **kwargs):
self.hps_ms = get_hparams_from_file(config) if isinstance(config, str) else config
self.n_speakers = getattr(self.hps_ms.data, 'n_speakers', 0)
self.speakers = [item[0] for item in
sorted(list(getattr(self.hps_ms.data, 'spk2id', {'0': 0}).items()), key=lambda x: x[1])]
self.symbols = symbols
# Compatible with legacy versions
self.version = process_legacy_versions(self.hps_ms)
if self.version in ["1.0", "1.0.0", "1.0.1"]:
self.symbols = symbols_legacy
self.hps_ms.model.n_layers_trans_flow = 3
elif self.version in ["1.1.0-transition"]:
self.hps_ms.model.n_layers_trans_flow = 3
elif self.version in ["1.1", "1.1.0", "1.1.1"]:
self.hps_ms.model.n_layers_trans_flow = 6
key = f"{ModelType.BERT_VITS2.value}_v{self.version}" if self.version else ModelType.BERT_VITS2.value
self.lang = lang_dict.get(key, ["unknown"])
self.bert_handler = BertHandler(self.lang)
self._symbol_to_id = {s: i for i, s in enumerate(self.symbols)}
self.net_g = SynthesizerTrn(
len(self.symbols),
self.hps_ms.data.filter_length // 2 + 1,
self.hps_ms.train.segment_size // self.hps_ms.data.hop_length,
n_speakers=self.hps_ms.data.n_speakers,
symbols=self.symbols,
**self.hps_ms.model).to(device)
_ = self.net_g.eval()
self.device = device
self.load_model(model)
def load_model(self, model):
bert_vits2_utils.load_checkpoint(model, self.net_g, None, skip_optimizer=True, version=self.version)
def get_speakers(self):
return self.speakers
@property
def sampling_rate(self):
return self.hps_ms.data.sampling_rate
def get_text(self, text, language_str, hps):
norm_text, phone, tone, word2ph = clean_text(text, language_str)
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str, self._symbol_to_id)
if hps.data.add_blank:
phone = commons.intersperse(phone, 0)
tone = commons.intersperse(tone, 0)
language = commons.intersperse(language, 0)
for i in range(len(word2ph)):
word2ph[i] = word2ph[i] * 2
word2ph[0] += 1
bert = self.bert_handler.get_bert(norm_text, word2ph, language_str)
del word2ph
assert bert.shape[-1] == len(phone), phone
if language_str == "zh":
bert = bert
ja_bert = torch.zeros(768, len(phone))
elif language_str == "ja":
ja_bert = bert
bert = torch.zeros(1024, len(phone))
else:
bert = torch.zeros(1024, len(phone))
ja_bert = torch.zeros(768, len(phone))
assert bert.shape[-1] == len(
phone
), f"Bert seq len {bert.shape[-1]} != {len(phone)}"
phone = torch.LongTensor(phone)
tone = torch.LongTensor(tone)
language = torch.LongTensor(language)
return bert, ja_bert, phone, tone, language
def infer(self, text, lang, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid):
bert, ja_bert, phones, tones, lang_ids = self.get_text(text, lang, self.hps_ms)
with torch.no_grad():
x_tst = phones.to(self.device).unsqueeze(0)
tones = tones.to(self.device).unsqueeze(0)
lang_ids = lang_ids.to(self.device).unsqueeze(0)
bert = bert.to(self.device).unsqueeze(0)
ja_bert = ja_bert.to(self.device).unsqueeze(0)
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(self.device)
speakers = torch.LongTensor([int(sid)]).to(self.device)
audio = self.net_g.infer(x_tst, x_tst_lengths, speakers, tones, lang_ids, bert, ja_bert, sdp_ratio=sdp_ratio
, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale)[
0][0, 0].data.cpu().float().numpy()
torch.cuda.empty_cache()
return audio
def get_audio(self, voice, auto_break=False):
text = voice.get("text", None)
lang = voice.get("lang", "auto")
sdp_ratio = voice.get("sdp_ratio", 0.2)
noise_scale = voice.get("noise", 0.5)
noise_scale_w = voice.get("noisew", 0.6)
length_scale = voice.get("length", 1)
sid = voice.get("id", 0)
max = voice.get("max", 50)
# sentence_list = sentence_split_and_markup(text, max, "ZH", ["zh"])
if lang == "auto":
lang = classify_language(text, target_languages=self.lang)
sentence_list = cut(text, max)
audios = []
for sentence in sentence_list:
audio = self.infer(sentence, lang, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid)
audios.append(audio)
audio = np.concatenate(audios)
return audio