Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
CHANGED
@@ -1,20 +1,47 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
|
3 |
-
import
|
4 |
-
|
5 |
-
from transformers import BlipProcessor, BlipForConditionalGeneration
|
6 |
|
7 |
-
|
8 |
-
|
9 |
|
10 |
-
|
11 |
-
inputs = processor(raw_image, return_tensors="pt")
|
12 |
-
out = model.generate(**inputs)
|
13 |
-
return processor.decode(out[0], skip_special_tokens=True)
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
outputs = [
|
16 |
-
gr.outputs.Textbox(label="Caption
|
17 |
]
|
18 |
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoProcessor, BlipForConditionalGeneration
|
3 |
|
4 |
+
# from transformers import AutoProcessor, AutoTokenizer, AutoImageProcessor, AutoModelForCausalLM, BlipForConditionalGeneration, Blip2ForConditionalGeneration, VisionEncoderDecoderModel
|
5 |
+
import torch
|
|
|
6 |
|
7 |
+
blip_processor_large = AutoProcessor.from_pretrained("umm-maybe/image-generator-identifier")
|
8 |
+
blip_model_large = BlipForConditionalGeneration.from_pretrained("umm-maybe/image-generator-identifier")
|
9 |
|
10 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
|
11 |
|
12 |
+
blip_model_large.to(device)
|
13 |
+
|
14 |
+
def generate_caption(processor, model, image):
|
15 |
+
inputs = processor(images=image, return_tensors="pt").to(device)
|
16 |
+
|
17 |
+
generated_ids = model.generate(pixel_values=inputs.pixel_values, max_length=50)
|
18 |
+
|
19 |
+
generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
20 |
+
|
21 |
+
return generated_caption
|
22 |
+
|
23 |
+
|
24 |
+
def generate_captions(image):
|
25 |
+
|
26 |
+
caption_blip_large = generate_caption(blip_processor_large, blip_model_large, image)
|
27 |
+
|
28 |
+
return caption_blip_large
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
examples = [["australia.jpg"], ["biden.png"], ["elon.jpg"], ["horns.jpg"], ["man.jpg"], ["nun.jpg"], ["painting.jpg"], ["pentagon.jpg"], ["pollock.jpg"], ["radcliffe.jpg"], ["split.jpg"], ["waves.jpg"], ["yeti.jpg"]]
|
33 |
outputs = [
|
34 |
+
gr.outputs.Textbox(label="Caption including detected generator (if applicable)"),
|
35 |
]
|
36 |
|
37 |
+
title = "Generator Identification via Image Captioning"
|
38 |
+
description = "Gradio Demo to illustrate the use of a fine-tuned BLIP image captioning to identify synthetic images. To use it, simply upload your image and click 'submit', or click one of the examples to load them."
|
39 |
+
|
40 |
+
interface = gr.Interface(fn=generate_captions,
|
41 |
+
inputs=gr.inputs.Image(type="pil"),
|
42 |
+
outputs="textbox",
|
43 |
+
examples=examples,
|
44 |
+
title=title,
|
45 |
+
description=description,
|
46 |
+
enable_queue=True)
|
47 |
+
interface.launch()
|