physics-bot / app.py
github-actions
Sync updates from source repository
43add8c
from omegaconf import OmegaConf
from query import VectaraQuery
import os
from PIL import Image
import uuid
import streamlit as st
from streamlit_pills import pills
from streamlit_feedback import streamlit_feedback
from utils import thumbs_feedback, send_amplitude_data, escape_dollars_outside_latex
from dotenv import load_dotenv
load_dotenv(override=True)
max_examples = 6
languages = {'English': 'eng', 'Spanish': 'spa', 'French': 'fra', 'Chinese': 'zho', 'German': 'deu', 'Hindi': 'hin', 'Arabic': 'ara',
'Portuguese': 'por', 'Italian': 'ita', 'Japanese': 'jpn', 'Korean': 'kor', 'Russian': 'rus', 'Turkish': 'tur', 'Persian (Farsi)': 'fas',
'Vietnamese': 'vie', 'Thai': 'tha', 'Hebrew': 'heb', 'Dutch': 'nld', 'Indonesian': 'ind', 'Polish': 'pol', 'Ukrainian': 'ukr',
'Romanian': 'ron', 'Swedish': 'swe', 'Czech': 'ces', 'Greek': 'ell', 'Bengali': 'ben', 'Malay (or Malaysian)': 'msa', 'Urdu': 'urd'}
# Setup for HTTP API Calls to Amplitude Analytics
if 'device_id' not in st.session_state:
st.session_state.device_id = str(uuid.uuid4())
if "feedback_key" not in st.session_state:
st.session_state.feedback_key = 0
def isTrue(x) -> bool:
if isinstance(x, bool):
return x
return x.strip().lower() == 'true'
def launch_bot():
def reset():
st.session_state.messages = [{"role": "assistant", "content": "How may I help you?", "avatar": 'πŸ€–'}]
st.session_state.ex_prompt = None
st.session_state.first_turn = True
def generate_response(question):
response = vq.submit_query(question, languages[st.session_state.language])
return response
def generate_streaming_response(question):
response = vq.submit_query_streaming(question, languages[st.session_state.language])
return response
def show_example_questions():
if len(st.session_state.example_messages) > 0 and st.session_state.first_turn:
selected_example = pills("Queries to Try:", st.session_state.example_messages, index=None)
if selected_example:
st.session_state.ex_prompt = selected_example
st.session_state.first_turn = False
return True
return False
if 'cfg' not in st.session_state:
corpus_keys = str(os.environ['corpus_keys']).split(',')
cfg = OmegaConf.create({
'corpus_keys': corpus_keys,
'api_key': str(os.environ['api_key']),
'title': os.environ['title'],
'source_data_desc': os.environ['source_data_desc'],
'streaming': isTrue(os.environ.get('streaming', False)),
'prompt_name': os.environ.get('prompt_name', None),
'examples': os.environ.get('examples', None),
'language': 'English'
})
st.session_state.cfg = cfg
st.session_state.ex_prompt = None
st.session_state.first_turn = True
st.session_state.language = cfg.language
example_messages = [example.strip() for example in cfg.examples.split(",")]
st.session_state.example_messages = [em for em in example_messages if len(em)>0][:max_examples]
st.session_state.vq = VectaraQuery(cfg.api_key, cfg.corpus_keys, cfg.prompt_name)
cfg = st.session_state.cfg
vq = st.session_state.vq
st.set_page_config(page_title=cfg.title, layout="wide")
# left side content
with st.sidebar:
image = Image.open('Vectara-logo.png')
st.image(image, width=175)
st.markdown(f"## About\n\n"
f"This demo uses Vectara RAG to ask questions about {cfg.source_data_desc}\n")
cfg.language = st.selectbox('Language:', languages.keys())
if st.session_state.language != cfg.language:
st.session_state.language = cfg.language
reset()
st.rerun()
st.markdown("\n")
bc1, _ = st.columns([1, 1])
with bc1:
if st.button('Start Over'):
reset()
st.rerun()
st.markdown("---")
st.markdown(
"## How this works?\n"
"This app was built with [Vectara](https://vectara.com).\n"
"This app uses Vectara [Chat API](https://docs.vectara.com/docs/console-ui/vectara-chat-overview) to query the corpus and present the results to you, answering your question.\n\n"
)
st.markdown(f"<center> <h2> Vectara AI Assistant: {cfg.title} </h2> </center>", unsafe_allow_html=True)
if "messages" not in st.session_state.keys():
reset()
# Display chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"], avatar=message["avatar"]):
st.write(message["content"])
example_container = st.empty()
with example_container:
if show_example_questions():
example_container.empty()
st.rerun()
# select prompt from example question or user provided input
if st.session_state.ex_prompt:
prompt = st.session_state.ex_prompt
else:
prompt = st.chat_input()
if prompt:
st.session_state.messages.append({"role": "user", "content": prompt, "avatar": 'πŸ§‘β€πŸ’»'})
with st.chat_message("user", avatar="πŸ§‘β€πŸ’»"):
st.write(prompt)
st.session_state.ex_prompt = None
# Generate a new response if last message is not from assistant
if st.session_state.messages[-1]["role"] != "assistant":
with st.chat_message("assistant", avatar="πŸ€–"):
if cfg.streaming:
stream = generate_streaming_response(prompt)
response = st.write_stream(stream)
else:
with st.spinner("Thinking..."):
response = generate_response(prompt)
st.write(response)
response = escape_dollars_outside_latex(response)
message = {"role": "assistant", "content": response, "avatar": 'πŸ€–'}
st.session_state.messages.append(message)
# Send query and response to Amplitude Analytics
send_amplitude_data(
user_query=st.session_state.messages[-2]["content"],
chat_response=st.session_state.messages[-1]["content"],
demo_name=cfg["title"],
language=st.session_state.language
)
st.rerun()
if (st.session_state.messages[-1]["role"] == "assistant") & (st.session_state.messages[-1]["content"] != "How may I help you?"):
streamlit_feedback(feedback_type="thumbs", on_submit = thumbs_feedback, key = st.session_state.feedback_key,
kwargs = {"user_query": st.session_state.messages[-2]["content"],
"chat_response": st.session_state.messages[-1]["content"],
"demo_name": cfg["title"],
"response_language": st.session_state.language})
if __name__ == "__main__":
launch_bot()