|
from __future__ import division |
|
import os, glob, shutil, math, random, json |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torchvision |
|
import basic |
|
from utils import util |
|
|
|
eps = 0.0000001 |
|
|
|
class SPixelLoss: |
|
def __init__(self, psize=8, mpdist=False, gpu_no=0): |
|
self.mpdist = mpdist |
|
self.gpu_no = gpu_no |
|
self.sp_size = psize |
|
|
|
def __call__(self, data, epoch_no): |
|
kernel_size = self.sp_size |
|
|
|
prob = data['pred_prob'] |
|
labxy_feat = data['target_feat'] |
|
N,C,H,W = labxy_feat.shape |
|
pooled_labxy = basic.poolfeat(labxy_feat, prob, kernel_size, kernel_size) |
|
reconstr_feat = basic.upfeat(pooled_labxy, prob, kernel_size, kernel_size) |
|
loss_map = reconstr_feat[:,:,:,:] - labxy_feat[:,:,:,:] |
|
featLoss_idx = torch.norm(loss_map[:,:-2,:,:], p=2, dim=1).mean() |
|
posLoss_idx = torch.norm(loss_map[:,-2:,:,:], p=2, dim=1).mean() / kernel_size |
|
totalLoss_idx = 10*featLoss_idx + 0.003*posLoss_idx |
|
return {'totalLoss':totalLoss_idx, 'featLoss':featLoss_idx, 'posLoss':posLoss_idx} |
|
|
|
|
|
class AnchorColorProbLoss: |
|
def __init__(self, hint2regress=False, enhanced=False, with_grad=False, mpdist=False, gpu_no=0): |
|
self.mpdist = mpdist |
|
self.gpu_no = gpu_no |
|
self.hint2regress = hint2regress |
|
self.enhanced = enhanced |
|
self.with_grad = with_grad |
|
self.rebalance_gradient = basic.RebalanceLoss.apply |
|
self.entropy_loss = nn.CrossEntropyLoss(ignore_index=-1) |
|
if self.enhanced: |
|
self.VGGLoss = VGG19Loss(gpu_no=gpu_no, is_ddp=mpdist) |
|
|
|
def _perceptual_loss(self, input_grays, input_colors, pred_colors): |
|
input_RGBs = basic.lab2rgb(torch.cat([input_grays,input_colors], dim=1)) |
|
pred_RGBs = basic.lab2rgb(torch.cat([input_grays,pred_colors], dim=1)) |
|
|
|
return self.VGGLoss(input_RGBs, pred_RGBs) |
|
|
|
def _laplace_gradient(self, pred_AB, target_AB): |
|
N,C,H,W = pred_AB.shape |
|
kernel = torch.tensor([[1, 1, 1], [1, -8, 1], [1, 1, 1]], device=pred_AB.get_device()).float() |
|
kernel = kernel.view(1, 1, *kernel.size()).repeat(C,1,1,1) |
|
grad_pred = F.conv2d(pred_AB, kernel, groups=C) |
|
grad_trg = F.conv2d(target_AB, kernel, groups=C) |
|
return l1_loss(grad_trg, grad_pred) |
|
|
|
def __call__(self, data, epoch_no): |
|
N,C,H,W = data['target_label'].shape |
|
pal_probs = self.rebalance_gradient(data['pal_prob'], data['class_weight']) |
|
|
|
pal_probs = pal_probs.permute(0,2,3,1).contiguous().view(N*H*W, -1) |
|
gt_labels = data['target_label'].permute(0,2,3,1).contiguous().view(N*H*W, -1) |
|
''' |
|
igored_mask = data['empty_entries'].permute(0,2,3,1).contiguous().view(N*H*W, -1) |
|
gt_labels[igored_mask] = -1 |
|
gt_labels = gt_probs.squeeze() |
|
''' |
|
palLoss_idx = self.entropy_loss(pal_probs, gt_labels.squeeze(dim=1)) |
|
if self.hint2regress: |
|
ref_probs = data['ref_prob'] |
|
refLoss_idx = 50 * l2_loss(data['spix_color'], ref_probs) |
|
else: |
|
ref_probs = self.rebalance_gradient(data['ref_prob'], data['class_weight']) |
|
ref_probs = ref_probs.permute(0,2,3,1).contiguous().view(N*H*W, -1) |
|
refLoss_idx = self.entropy_loss(ref_probs, gt_labels.squeeze(dim=1)) |
|
reconLoss_idx = torch.zeros_like(palLoss_idx) |
|
if self.enhanced: |
|
scalar = 1.0 if self.hint2regress else 5.0 |
|
reconLoss_idx = scalar * self._perceptual_loss(data['input_gray'], data['pred_color'], data['input_color']) |
|
if self.with_grad: |
|
gradient_loss = self._laplace_gradient(data['pred_color'], data['input_color']) |
|
reconLoss_idx += gradient_loss |
|
totalLoss_idx = palLoss_idx + refLoss_idx + reconLoss_idx |
|
|
|
return {'totalLoss':totalLoss_idx, 'palLoss':palLoss_idx, 'refLoss':refLoss_idx, 'recLoss':reconLoss_idx} |
|
|
|
|
|
def compute_affinity_pos_loss(prob_in, labxy_feat, pos_weight=0.003, kernel_size=16): |
|
S = kernel_size |
|
m = pos_weight |
|
prob = prob_in.clone() |
|
N,C,H,W = labxy_feat.shape |
|
pooled_labxy = basic.poolfeat(labxy_feat, prob, kernel_size, kernel_size) |
|
reconstr_feat = basic.upfeat(pooled_labxy, prob, kernel_size, kernel_size) |
|
loss_map = reconstr_feat[:,:,:,:] - labxy_feat[:,:,:,:] |
|
loss_feat = torch.norm(loss_map[:,:-2,:,:], p=2, dim=1).mean() |
|
loss_pos = torch.norm(loss_map[:,-2:,:,:], p=2, dim=1).mean() * m / S |
|
loss_affinity = loss_feat + loss_pos |
|
return loss_affinity |
|
|
|
|
|
def l2_loss(y_input, y_target, weight_map=None): |
|
if weight_map is None: |
|
return F.mse_loss(y_input, y_target) |
|
else: |
|
diff_map = torch.mean(torch.abs(y_input-y_target), dim=1, keepdim=True) |
|
batch_dev = torch.sum(diff_map*diff_map*weight_map, dim=(1,2,3)) / (eps+torch.sum(weight_map, dim=(1,2,3))) |
|
return batch_dev.mean() |
|
|
|
|
|
def l1_loss(y_input, y_target, weight_map=None): |
|
if weight_map is None: |
|
return F.l1_loss(y_input, y_target) |
|
else: |
|
diff_map = torch.mean(torch.abs(y_input-y_target), dim=1, keepdim=True) |
|
batch_dev = torch.sum(diff_map*weight_map, dim=(1,2,3)) / (eps+torch.sum(weight_map, dim=(1,2,3))) |
|
return batch_dev.mean() |
|
|
|
|
|
def masked_l1_loss(y_input, y_target, outlier_mask): |
|
one = torch.tensor([1.0]).cuda(y_input.get_device()) |
|
weight_map = torch.where(outlier_mask, one * 0.0, one * 1.0) |
|
return l1_loss(y_input, y_target, weight_map) |
|
|
|
|
|
def huber_loss(y_input, y_target, delta=0.01): |
|
mask = torch.zeros_like(y_input) |
|
mann = torch.abs(y_input - y_target) |
|
eucl = 0.5 * (mann**2) |
|
mask[...] = mann < delta |
|
loss = eucl * mask / delta + (mann - 0.5 * delta) * (1 - mask) |
|
return torch.mean(loss) |
|
|
|
|
|
|
|
class VGG19Loss(nn.Module): |
|
def __init__(self, feat_type='liu', gpu_no=0, is_ddp=False, requires_grad=False): |
|
super(VGG19Loss, self).__init__() |
|
os.environ['TORCH_HOME'] = '/apdcephfs/share_1290939/richardxia/Saved/Checkpoints/VGG19' |
|
|
|
self.mean = [0.485, 0.456, 0.406] |
|
self.std = [0.229, 0.224, 0.225] |
|
self.feat_type = feat_type |
|
|
|
vgg_model = torchvision.models.vgg19(pretrained=True) |
|
|
|
''' |
|
if is_ddp: |
|
vgg_model = vgg_model.cuda(gpu_no) |
|
vgg_model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(vgg_model) |
|
vgg_model = torch.nn.parallel.DistributedDataParallel(vgg_model, device_ids=[gpu_no], find_unused_parameters=True) |
|
else: |
|
vgg_model = vgg_model.cuda(gpu_no) |
|
''' |
|
vgg_model = vgg_model.cuda(gpu_no) |
|
if self.feat_type == 'liu': |
|
|
|
self.slice1 = nn.Sequential(*list(vgg_model.features)[:2]).eval() |
|
self.slice2 = nn.Sequential(*list(vgg_model.features)[2:7]).eval() |
|
self.slice3 = nn.Sequential(*list(vgg_model.features)[7:12]).eval() |
|
self.slice4 = nn.Sequential(*list(vgg_model.features)[12:21]).eval() |
|
self.slice5 = nn.Sequential(*list(vgg_model.features)[21:30]).eval() |
|
self.weights = [1.0/32, 1.0/16, 1.0/8, 1.0/4, 1.0] |
|
elif self.feat_type == 'lei': |
|
|
|
self.slice1 = nn.Sequential(*list(vgg_model.features)[:4]).eval() |
|
self.slice2 = nn.Sequential(*list(vgg_model.features)[4:9]).eval() |
|
self.slice3 = nn.Sequential(*list(vgg_model.features)[9:14]).eval() |
|
self.slice4 = nn.Sequential(*list(vgg_model.features)[14:23]).eval() |
|
self.slice5 = nn.Sequential(*list(vgg_model.features)[23:32]).eval() |
|
self.weights = [1.0/2.6, 1.0/4.8, 1.0/3.7, 1.0/5.6, 10.0/1.5] |
|
else: |
|
|
|
self.featureExactor = nn.Sequential(*list(vgg_model.features)[:28]).eval() |
|
''' |
|
for x in range(2): |
|
self.slice1.add_module(str(x), pretrained_features[x]) |
|
for x in range(2, 7): |
|
self.slice2.add_module(str(x), pretrained_features[x]) |
|
for x in range(7, 12): |
|
self.slice3.add_module(str(x), pretrained_features[x]) |
|
for x in range(12, 21): |
|
self.slice4.add_module(str(x), pretrained_features[x]) |
|
for x in range(21, 30): |
|
self.slice5.add_module(str(x), pretrained_features[x]) |
|
''' |
|
self.criterion = nn.L1Loss() |
|
|
|
|
|
if not requires_grad: |
|
for param in self.parameters(): |
|
param.requires_grad = False |
|
self.eval() |
|
print('[*] VGG19Loss init!') |
|
|
|
def normalize(self, tensor): |
|
tensor = tensor.clone() |
|
mean = torch.as_tensor(self.mean, dtype=torch.float32, device=tensor.device) |
|
std = torch.as_tensor(self.std, dtype=torch.float32, device=tensor.device) |
|
tensor.sub_(mean[None, :, None, None]).div_(std[None, :, None, None]) |
|
return tensor |
|
|
|
def forward(self, x, y): |
|
norm_x, norm_y = self.normalize(x), self.normalize(y) |
|
|
|
if self.feat_type == 'liu' or self.feat_type == 'lei': |
|
x_relu1, y_relu1 = self.slice1(norm_x), self.slice1(norm_y) |
|
x_relu2, y_relu2 = self.slice2(x_relu1), self.slice2(y_relu1) |
|
x_relu3, y_relu3 = self.slice3(x_relu2), self.slice3(y_relu2) |
|
x_relu4, y_relu4 = self.slice4(x_relu3), self.slice4(y_relu3) |
|
x_relu5, y_relu5 = self.slice5(x_relu4), self.slice5(y_relu4) |
|
x_vgg = [x_relu1, x_relu2, x_relu3, x_relu4, x_relu5] |
|
y_vgg = [y_relu1, y_relu2, y_relu3, y_relu4, y_relu5] |
|
loss = 0 |
|
for i in range(len(x_vgg)): |
|
loss += self.weights[i] * self.criterion(x_vgg[i], y_vgg[i].detach()) |
|
else: |
|
x_vgg, y_vgg = self.featureExactor(norm_x), self.featureExactor(norm_y) |
|
loss = self.criterion(x_vgg, y_vgg.detach()) |
|
return loss |