Spaces:
Runtime error
Runtime error
File size: 7,821 Bytes
fc74c52 38314f3 fc74c52 268bc7e fc74c52 9ccf1f4 fc74c52 9ccf1f4 fc74c52 38314f3 fc74c52 eb27c80 fc74c52 e454491 fc74c52 9ccf1f4 fc74c52 eb27c80 e454491 fc74c52 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
# -*- coding: utf-8 -*-
"""InfogenQA_langchain.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1ubmRCRQhU3K16iDYgBcJ4XMPRffvctaa
"""
# Installing all required libraries
# Langchain - for buiding retrieval chains
# faiss-gpu - for performing similarity search on GPUs
# sentence_transformers - pre-trained sentence embeddings for understanding semantics
# Install required libraries
# !pip install -qU transformers accelerate einops langchain xformers bitsandbytes faiss-gpu sentence_transformers
# !pip install gradio
import os
# For handling UTF-8 locale error
import locale
def getpreferredencoding(do_setlocale = True):
return "UTF-8"
locale.getpreferredencoding = getpreferredencoding
from torch import cuda, bfloat16
import transformers
from accelerate import disk_offload
# Model used
model_id = 'meta-llama/Llama-2-7b-chat-hf'
# Detects available device (GPU or CPU)
device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu'
# set quantization configuration to load large model with less GPU memory
# this requires the `bitsandbytes` library
bnb_config = transformers.BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type='nf4',
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=bfloat16
)
# Hugging Face Access Token
hf_auth = os.environ.get("hf_auth")
# Downloading and parsing model's configuration from HF
model_config = transformers.AutoConfig.from_pretrained(
model_id,
token=hf_auth
)
# Downloading and Initializing the model
model = transformers.AutoModelForCausalLM.from_pretrained(
model_id,
trust_remote_code=True,
config=model_config,
quantization_config=bnb_config,
device_map='auto',
token=hf_auth
)
# enable evaluation mode to allow model inference
model.eval()
print(f"Model loaded on {device}")
# Initialize tokenization process for Llama-2
# used to process text into LLM compatible format
tokenizer = transformers.AutoTokenizer.from_pretrained(
model_id,
use_auth_token=hf_auth
)
# Defining strings to be treated as 'stop tokens' during text generation
stop_list = ['\nHuman:', '\n```\n']
# Converting stop tokens to their corresponding numerical token IDs
stop_token_ids = [tokenizer(x)['input_ids'] for x in stop_list]
stop_token_ids
import torch
# Converitng stop_token_ids into long tensors (64-bit) and load into selected device
stop_token_ids = [torch.LongTensor(x).to(device) for x in stop_token_ids]
stop_token_ids
from transformers import StoppingCriteria, StoppingCriteriaList
# define custom stopping criteria object
# Allows us to check whether the generated text contains stop_token_ids
class StopOnTokens(StoppingCriteria):
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
for stop_ids in stop_token_ids:
if torch.eq(input_ids[0][-len(stop_ids):], stop_ids).all():
return True
return False
# Defining a list of stopping criteria
stopping_criteria = StoppingCriteriaList([StopOnTokens()])
# Function to generate text using Llama
generate_text = transformers.pipeline(
model=model,
tokenizer=tokenizer,
return_full_text=True, # langchain expects the full text
task='text-generation',
# we pass model parameters here too
stopping_criteria=stopping_criteria, # without this model rambles during chat
temperature=0.1, # 'randomness' of outputs, 0.0 is the min and 1.0 the max
max_new_tokens=512, # max number of tokens to generate in the output
repetition_penalty=1.1 # without this output begins repeating
)
# Checking whether it is able to generate text or not
from langchain.llms import HuggingFacePipeline
llm = HuggingFacePipeline(pipeline=generate_text)
llm(prompt="Who is the CEO of Infogen Labs?")
# Importing WebBaseLoader class - used to load documents from web links
from langchain.document_loaders import WebBaseLoader
# A list containing web links from Infogen-Labs website
web_links = ["https://corp.infogen-labs.com/index.html",
"https://corp.infogen-labs.com/technology.html",
"https://corp.infogen-labs.com/EdTech.html",
"https://corp.infogen-labs.com/FinTech.html",
"https://corp.infogen-labs.com/retail.html",
"https://corp.infogen-labs.com/telecom.html",
"https://corp.infogen-labs.com/stud10.html",
"https://corp.infogen-labs.com/construction.html",
"https://corp.infogen-labs.com/RandD.html",
"https://corp.infogen-labs.com/microsoft.html",
"https://corp.infogen-labs.com/edge-technology.html",
"https://corp.infogen-labs.com/cloud-computing.html",
"https://corp.infogen-labs.com/uiux-studio.html",
"https://corp.infogen-labs.com/mobile-studio.html",
"https://corp.infogen-labs.com/qaqc-studio.html",
"https://corp.infogen-labs.com/platforms.html",
"https://corp.infogen-labs.com/about-us.html",
"https://corp.infogen-labs.com/career.html",
"https://corp.infogen-labs.com/contact-us.html"
]
# Fetch the content from web links and store the extracted text
loader = WebBaseLoader(web_links)
documents = loader.load()
# Splitting large text documents into smaller chunks for easier processing
from langchain.text_splitter import RecursiveCharacterTextSplitter
# Specifying chunk size
# chunk_overlap allows some overlap between cuts to maintain context
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=20)
# A lsit of splits from all the document
all_splits = text_splitter.split_documents(documents)
from langchain.embeddings import HuggingFaceEmbeddings # For numerical representation of the text
from langchain.vectorstores import FAISS # Similarity search in high-dimensional vector space
model_name = "sentence-transformers/all-mpnet-base-v2" # Embedding model
model_kwargs = {"device": "cuda"}
# used to generate embeddings from text
embeddings = HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs)
# storing embeddings in the vector store
vectorstore = FAISS.from_documents(all_splits, embeddings)
# Creating conversational agents that combine retrieval and generation capabilities
from langchain.chains import ConversationalRetrievalChain
# Creating a conversational retrieval chain by taking three arguments:
# LLM - for text generation
# converts FAISS vector store into a retriver object
# Also return the original source document to provide more context
chain = ConversationalRetrievalChain.from_llm(llm, vectorstore.as_retriever(), return_source_documents=True)
# For demo purpose
# Storing chat history for asking follow up questions
# chat_history = []
# # Asking query
# query = "Who is the CEO of Infogen Labs?"
# result = chain({"question": query, "chat_history": chat_history})
# # Printing the result
# print(result['answer'])
# # Adding current question and generated answer
# chat_history.append((query, result["answer"]))
# # Printing source document from where the results were derived
# print(result['source_documents'])
import gradio as gr
def process_answer(answer):
answer = answer.replace('If you don\'t know the answer to this question, please say so.', '')
answer = answer.replace('Based on the information provided in the passage', 'Based on my current knowledge')
return answer
def generate_response(message, history):
chat_history = []
for val in history:
chat_history.append(tuple(val))
result = chain({"question": message, "chat_history": chat_history})
response = process_answer(result['answer'])
return response
gr.ChatInterface(generate_response).launch()
|