StableVideo / stablevideo /atlas_utils.py
wchai's picture
convert to CPU
d515943
raw
history blame
13.4 kB
from PIL import Image
from pathlib import Path
import scipy.interpolate
import torch
from torchvision import transforms
from torchvision.transforms.functional import crop
from tqdm import tqdm
import numpy as np
import cv2
from stablevideo.implicit_neural_networks import IMLP
def load_video(folder: str, resize=(432, 768), num_frames=70):
resy, resx = resize
folder = Path(folder)
input_files = sorted(list(folder.glob("*.jpg")) + list(folder.glob("*.png")))[:num_frames]
video_tensor = torch.zeros((len(input_files), 3, resy, resx))
for i, file in enumerate(input_files):
video_tensor[i] = transforms.ToTensor()(Image.open(str(file)).resize((resx, resy), Image.LANCZOS))
return video_tensor
def load_neural_atlases_models(config):
foreground_mapping = IMLP(
input_dim=3,
output_dim=2,
hidden_dim=256,
use_positional=False,
num_layers=6,
skip_layers=[],
).to(config["device"])
background_mapping = IMLP(
input_dim=3,
output_dim=2,
hidden_dim=256,
use_positional=False,
num_layers=4,
skip_layers=[],
).to(config["device"])
foreground_atlas_model = IMLP(
input_dim=2,
output_dim=3,
hidden_dim=256,
use_positional=True,
positional_dim=10,
num_layers=8,
skip_layers=[4, 7],
).to(config["device"])
background_atlas_model = IMLP(
input_dim=2,
output_dim=3,
hidden_dim=256,
use_positional=True,
positional_dim=10,
num_layers=8,
skip_layers=[4, 7],
).to(config["device"])
alpha_model = IMLP(
input_dim=3,
output_dim=1,
hidden_dim=256,
use_positional=True,
positional_dim=5,
num_layers=8,
skip_layers=[],
).to(config["device"])
checkpoint = torch.load(config["checkpoint_path"], map_location=torch.device('cpu'))
foreground_mapping.load_state_dict(checkpoint["model_F_mapping1_state_dict"])
background_mapping.load_state_dict(checkpoint["model_F_mapping2_state_dict"])
foreground_atlas_model.load_state_dict(checkpoint["F_atlas_state_dict"])
background_atlas_model.load_state_dict(checkpoint["F_atlas_state_dict"])
alpha_model.load_state_dict(checkpoint["model_F_alpha_state_dict"])
foreground_mapping = foreground_mapping.eval().requires_grad_(False)
background_mapping = background_mapping.eval().requires_grad_(False)
foreground_atlas_model = foreground_atlas_model.eval().requires_grad_(False)
background_atlas_model = background_atlas_model.eval().requires_grad_(False)
alpha_model = alpha_model.eval().requires_grad_(False)
return foreground_mapping, background_mapping, foreground_atlas_model, background_atlas_model, alpha_model
@torch.no_grad()
def get_frames_data(config, foreground_mapping, background_mapping, alpha_model):
max_size = max(config["resx"], config["resy"])
normalizing_factor = torch.tensor([max_size / 2, max_size / 2, config["maximum_number_of_frames"] / 2])
background_uv_values = torch.zeros(
size=(config["maximum_number_of_frames"], config["resy"], config["resx"], 2), device=config["device"]
)
foreground_uv_values = torch.zeros(
size=(config["maximum_number_of_frames"], config["resy"], config["resx"], 2), device=config["device"]
)
alpha = torch.zeros(
size=(config["maximum_number_of_frames"], config["resy"], config["resx"], 1), device=config["device"]
)
for frame in tqdm(range(config["maximum_number_of_frames"]), leave=False):
indices = get_grid_indices(0, 0, config["resy"], config["resx"], t=torch.tensor(frame))
normalized_chunk = (indices / normalizing_factor - 1).to(config["device"])
# get the atlas UV coordinates from the two mapping networks;
with torch.no_grad():
current_background_uv_values = background_mapping(normalized_chunk)
current_foreground_uv_values = foreground_mapping(normalized_chunk)
current_alpha = alpha_model(normalized_chunk)
background_uv_values[frame, indices[:, 1], indices[:, 0]] = current_background_uv_values * 0.5 - 0.5
foreground_uv_values[frame, indices[:, 1], indices[:, 0]] = current_foreground_uv_values * 0.5 + 0.5
current_alpha = 0.5 * (current_alpha + 1.0)
current_alpha = 0.99 * current_alpha + 0.001
alpha[frame, indices[:, 1], indices[:, 0]] = current_alpha
# config["return_atlas_alpha"] = True
if config["return_atlas_alpha"]: # this should take a few minutes
foreground_atlas_alpha = torch.zeros(
size=(
config["maximum_number_of_frames"],
config["grid_atlas_resolution"],
config["grid_atlas_resolution"],
1,
),
)
# foreground_uv_values: 70 x 432 x 768 x 2
foreground_uv_values_grid = foreground_uv_values * config["grid_atlas_resolution"]
# indices: 4000000 x 2
indices = get_grid_indices(0, 0, config["grid_atlas_resolution"], config["grid_atlas_resolution"])
for frame in tqdm(range(config["maximum_number_of_frames"]), leave=False):
interpolated = scipy.interpolate.griddata(
foreground_uv_values_grid[frame].reshape(-1, 2).cpu().numpy(), # 432 x 768 x 2 -> -1 x 2
alpha[frame]
.reshape(
-1,
)
.cpu()
.numpy(),
indices.reshape(-1, 2).cpu().numpy(),
method="linear",
).reshape(config["grid_atlas_resolution"], config["grid_atlas_resolution"], 1)
foreground_atlas_alpha[frame] = torch.from_numpy(interpolated)
foreground_atlas_alpha[foreground_atlas_alpha.isnan()] = 0.0
foreground_atlas_alpha = (
torch.median(foreground_atlas_alpha, dim=0, keepdim=True).values.to(config["device"]).permute(0, 3, 2, 1)
)
else:
foreground_atlas_alpha = None
return background_uv_values, foreground_uv_values, alpha.permute(0, 3, 1, 2), foreground_atlas_alpha
@torch.no_grad()
def reconstruct_video_layer(uv_values, atlas_model):
t, h, w, _ = uv_values.shape
reconstruction = torch.zeros(size=(t, h, w, 3), device=uv_values.device)
for frame in range(t):
rgb = (atlas_model(uv_values[frame].reshape(-1, 2)) + 1) * 0.5
reconstruction[frame] = rgb.reshape(h, w, 3)
return reconstruction.permute(0, 3, 1, 2)
@torch.no_grad()
def create_uv_mask(config, mapping_model, min_u, min_v, max_u, max_v, uv_shift=-0.5, resolution_shift=1):
max_size = max(config["resx"], config["resy"])
normalizing_factor = torch.tensor([max_size / 2, max_size / 2, config["maximum_number_of_frames"] / 2])
resolution = config["grid_atlas_resolution"]
uv_mask = torch.zeros(size=(resolution, resolution), device=config["device"])
for frame in tqdm(range(config["maximum_number_of_frames"]), leave=False):
indices = get_grid_indices(0, 0, config["resy"], config["resx"], t=torch.tensor(frame))
for chunk in indices.split(50000, dim=0):
normalized_chunk = (chunk / normalizing_factor - 1).to(config["device"])
# get the atlas UV coordinates from the two mapping networks;
with torch.no_grad():
uv_values = mapping_model(normalized_chunk)
uv_values = uv_values * 0.5 + uv_shift
uv_values = ((uv_values + resolution_shift) * resolution).clip(0, resolution - 1)
uv_mask[uv_values[:, 1].floor().long(), uv_values[:, 0].floor().long()] = 1
uv_mask[uv_values[:, 1].floor().long(), uv_values[:, 0].ceil().long()] = 1
uv_mask[uv_values[:, 1].ceil().long(), uv_values[:, 0].floor().long()] = 1
uv_mask[uv_values[:, 1].ceil().long(), uv_values[:, 0].ceil().long()] = 1
uv_mask = crop(uv_mask.unsqueeze(0).unsqueeze(0), min_v, min_u, max_v, max_u)
return uv_mask.detach().cpu() # shape [1, 1, resolution, resolution]
@torch.no_grad()
def get_high_res_atlas(atlas_model, min_v, min_u, max_v, max_u, resolution, device="cuda", layer="background"):
inds_grid = get_grid_indices(0, 0, resolution, resolution)
inds_grid_chunks = inds_grid.split(50000, dim=0)
if layer == "background":
shift = -1
else:
shift = 0
rendered_atlas = torch.zeros((resolution, resolution, 3)).to(device) # resy, resx, 3
with torch.no_grad():
# reconstruct image row by row
for chunk in inds_grid_chunks:
normalized_chunk = torch.stack(
[
(chunk[:, 0] / resolution) + shift,
(chunk[:, 1] / resolution) + shift,
],
dim=-1,
).to(device)
rgb_output = atlas_model(normalized_chunk)
rendered_atlas[chunk[:, 1], chunk[:, 0], :] = rgb_output
# move colors to RGB color domain (0,1)
rendered_atlas = 0.5 * (rendered_atlas + 1)
rendered_atlas = rendered_atlas.permute(2, 0, 1).unsqueeze(0) # shape (1, 3, resy, resx)
cropped_atlas = crop(
rendered_atlas,
min_v,
min_u,
max_v,
max_u,
)
return cropped_atlas
def get_grid_indices(x_start, y_start, h_crop, w_crop, t=None):
crop_indices = torch.meshgrid(torch.arange(w_crop) + x_start, torch.arange(h_crop) + y_start)
crop_indices = torch.stack(crop_indices, dim=-1)
crop_indices = crop_indices.reshape(h_crop * w_crop, crop_indices.shape[-1])
if t is not None:
crop_indices = torch.cat([crop_indices, t.repeat(h_crop * w_crop, 1)], dim=1)
return crop_indices
def get_atlas_crops(uv_values, grid_atlas, augmentation=None):
if len(uv_values.shape) == 3:
dims = [0, 1]
elif len(uv_values.shape) == 4:
dims = [0, 1, 2]
else:
raise ValueError("uv_values should be of shape of len 3 or 4")
min_u, min_v = uv_values.amin(dim=dims).long()
max_u, max_v = uv_values.amax(dim=dims).ceil().long()
# min_u, min_v = uv_values.min(dim=0).values
# max_u, max_v = uv_values.max(dim=0).values
h_v = max_v - min_v
w_u = max_u - min_u
atlas_crop = crop(grid_atlas, min_v, min_u, h_v, w_u)
if augmentation is not None:
atlas_crop = augmentation(atlas_crop)
return atlas_crop, torch.stack([min_u, min_v]), torch.stack([max_u, max_v])
def get_random_crop_params(input_size, output_size):
w, h = input_size
th, tw = output_size
if h + 1 < th or w + 1 < tw:
raise ValueError(f"Required crop size {(th, tw)} is larger then input image size {(h, w)}")
if w == tw and h == th:
return 0, 0, h, w
i = torch.randint(0, h - th + 1, size=(1,)).item()
j = torch.randint(0, w - tw + 1, size=(1,)).item()
return i, j, th, tw
def get_masks_boundaries(alpha_video, border=20, threshold=0.95, min_crop_size=2 ** 7 + 1):
resy, resx = alpha_video.shape[-2:]
num_frames = alpha_video.shape[0]
masks_borders = torch.zeros((num_frames, 4), dtype=torch.int64)
for i, file in enumerate(range(num_frames)):
mask_im = alpha_video[i]
mask_im[mask_im >= threshold] = 1
mask_im[mask_im < threshold] = 0
all_ones = mask_im.squeeze().nonzero()
min_y, min_x = torch.maximum(all_ones.min(dim=0).values - border, torch.tensor([0, 0]))
max_y, max_x = torch.minimum(all_ones.max(dim=0).values + border, torch.tensor([resy, resx]))
h = max_y - min_y
w = max_x - min_x
if h < min_crop_size:
pad = min_crop_size - h
if max_y + pad > resy:
min_y -= pad
else:
max_y += pad
h = max_y - min_y
if w < min_crop_size:
pad = min_crop_size - w
if max_x + pad > resx:
min_x -= pad
else:
max_x += pad
w = max_x - min_x
masks_borders[i] = torch.tensor([min_y, min_x, h, w])
return masks_borders
def get_atlas_bounding_box(mask_boundaries, grid_atlas, video_uvs):
min_uv = torch.tensor(grid_atlas.shape[-2:], device=video_uvs.device)
max_uv = torch.tensor([0, 0], device=video_uvs.device)
for boundary, frame in zip(mask_boundaries, video_uvs):
cropped_uvs = crop(frame.permute(2, 0, 1).unsqueeze(0), *list(boundary)) # 1,2,h,w
min_uv = torch.minimum(cropped_uvs.amin(dim=[0, 2, 3]), min_uv).floor().int()
max_uv = torch.maximum(cropped_uvs.amax(dim=[0, 2, 3]), max_uv).ceil().int()
hw = max_uv - min_uv
crop_data = [*list(min_uv)[::-1], *list(hw)[::-1]]
return crop(grid_atlas, *crop_data), crop_data
def tensor2im(input_image, imtype=np.uint8):
if not isinstance(input_image, np.ndarray):
if isinstance(input_image, torch.Tensor): # get the data from a variable
image_tensor = input_image.data
else:
return input_image
image_numpy = image_tensor[0].clamp(0.0, 1.0).cpu().float().numpy() # convert it into a numpy array
image_numpy = np.transpose(image_numpy, (1, 2, 0)) * 255.0 # post-processing: tranpose and scaling
else: # if it is a numpy array, do nothing
image_numpy = input_image
return image_numpy.astype(imtype)