ControlAR / model.py
wondervictor's picture
Update model.py
8c75ec9 verified
raw
history blame
9.68 kB
import gc
import spaces
from safetensors.torch import load_file
from autoregressive.models.gpt_t2i import GPT_models
from tokenizer.tokenizer_image.vq_model import VQ_models
from language.t5 import T5Embedder
import torch
import numpy as np
import PIL
from PIL import Image
from condition.canny import CannyDetector
import time
from autoregressive.models.generate import generate
from condition.midas.depth import MidasDetector
# from controlnet_aux import (
# MidasDetector,
# )
models = {
"canny": "checkpoints/canny_MR.safetensors",
"depth": "checkpoints/depth_MR.safetensors",
}
def resize_image_to_16_multiple(image, condition_type='canny'):
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
# image = Image.open(image_path)
width, height = image.size
if condition_type == 'depth': # The depth model requires a side length that is a multiple of 32
new_width = (width + 31) // 32 * 32
new_height = (height + 31) // 32 * 32
else:
new_width = (width + 15) // 16 * 16
new_height = (height + 15) // 16 * 16
resized_image = image.resize((new_width, new_height))
return resized_image
class Model:
def __init__(self):
self.device = torch.device(
"cuda:0")
self.base_model_id = ""
self.task_name = ""
self.vq_model = self.load_vq()
self.t5_model = self.load_t5()
self.gpt_model_canny = self.load_gpt(condition_type='canny')
self.gpt_model_depth = self.load_gpt(condition_type='depth')
self.get_control_canny = CannyDetector()
self.get_control_depth = MidasDetector('cuda')
# self.get_control_depth = MidasDetector.from_pretrained("lllyasviel/Annotators")
def to(self, device):
self.gpt_model_canny.to('cuda')
print(next(self.gpt_model_canny.adapter.parameters()).device)
# print(self.gpt_model_canny.device)
def load_vq(self):
vq_model = VQ_models["VQ-16"](codebook_size=16384,
codebook_embed_dim=8)
vq_model.to('cuda')
vq_model.eval()
checkpoint = torch.load(f"checkpoints/vq_ds16_t2i.pt",
map_location="cpu")
vq_model.load_state_dict(checkpoint["model"])
del checkpoint
print("image tokenizer is loaded")
return vq_model
def load_gpt(self, condition_type='canny'):
gpt_ckpt = models[condition_type]
precision = torch.bfloat16
latent_size = 768 // 16
gpt_model = GPT_models["GPT-XL"](
block_size=latent_size**2,
cls_token_num=120,
model_type='t2i',
condition_type=condition_type,
).to(device='cuda', dtype=precision)
model_weight = load_file(gpt_ckpt)
gpt_model.load_state_dict(model_weight, strict=False)
gpt_model.eval()
print("gpt model is loaded")
return gpt_model
def load_t5(self):
precision = torch.bfloat16
t5_model = T5Embedder(
device=self.device,
local_cache=True,
cache_dir='checkpoints/flan-t5-xl',
dir_or_name='flan-t5-xl',
torch_dtype=precision,
model_max_length=120,
)
return t5_model
@torch.no_grad()
@spaces.GPU(enable_queue=True)
def process_canny(
self,
image: np.ndarray,
prompt: str,
cfg_scale: float,
temperature: float,
top_k: int,
top_p: int,
seed: int,
low_threshold: int,
high_threshold: int,
) -> list[PIL.Image.Image]:
image = resize_image_to_16_multiple(image, 'canny')
W, H = image.size
print(W, H)
self.t5_model.model.to(self.device)
self.gpt_model_canny.to(self.device)
condition_img = self.get_control_canny(np.array(image), low_threshold,
high_threshold)
condition_img = torch.from_numpy(condition_img[None, None,
...]).repeat(
2, 3, 1, 1)
condition_img = condition_img.to(self.device)
condition_img = 2 * (condition_img / 255 - 0.5)
prompts = [prompt] * 2
caption_embs, emb_masks = self.t5_model.get_text_embeddings(prompts)
print(f"processing left-padding...")
new_emb_masks = torch.flip(emb_masks, dims=[-1])
new_caption_embs = []
for idx, (caption_emb,
emb_mask) in enumerate(zip(caption_embs, emb_masks)):
valid_num = int(emb_mask.sum().item())
print(f' prompt {idx} token len: {valid_num}')
new_caption_emb = torch.cat(
[caption_emb[valid_num:], caption_emb[:valid_num]])
new_caption_embs.append(new_caption_emb)
new_caption_embs = torch.stack(new_caption_embs)
c_indices = new_caption_embs * new_emb_masks[:, :, None]
c_emb_masks = new_emb_masks
qzshape = [len(c_indices), 8, H // 16, W // 16]
t1 = time.time()
print(caption_embs.device)
index_sample = generate(
self.gpt_model_canny,
c_indices,
(H // 16) * (W // 16),
c_emb_masks,
condition=condition_img,
cfg_scale=cfg_scale,
temperature=temperature,
top_k=top_k,
top_p=top_p,
sample_logits=True,
)
sampling_time = time.time() - t1
print(f"Full sampling takes about {sampling_time:.2f} seconds.")
t2 = time.time()
print(index_sample.shape)
samples = self.vq_model.decode_code(
index_sample, qzshape) # output value is between [-1, 1]
decoder_time = time.time() - t2
print(f"decoder takes about {decoder_time:.2f} seconds.")
samples = torch.cat((condition_img[0:1], samples), dim=0)
samples = 255 * (samples * 0.5 + 0.5)
samples = [image] + [
Image.fromarray(
sample.permute(1, 2, 0).cpu().detach().numpy().clip(
0, 255).astype(np.uint8)) for sample in samples
]
del condition_img
torch.cuda.empty_cache()
return samples
@torch.no_grad()
@spaces.GPU(enable_queue=True)
def process_depth(
self,
image: np.ndarray,
prompt: str,
cfg_scale: float,
temperature: float,
top_k: int,
top_p: int,
seed: int,
) -> list[PIL.Image.Image]:
image = resize_image_to_16_multiple(image, 'depth')
W, H = image.size
print(W, H)
self.t5_model.model.to(self.device)
self.gpt_model_depth.to(self.device)
self.get_control_depth.model.to(self.device)
self.vq_model.to(self.device)
image_tensor = torch.from_numpy(np.array(image)).to(self.device)
# condition_img = torch.from_numpy(
# self.get_control_depth(image_tensor)).unsqueeze(0)
# condition_img = condition_img.unsqueeze(0).repeat(2, 3, 1, 1)
# condition_img = condition_img.to(self.device)
# condition_img = 2 * (condition_img / 255 - 0.5)
condition_img = 2 * (image_tensor / 255 - 0.5)
print(condition_img.shape)
condition_img = condition_img.permute(2,0,1).unsqueeze(0).repeat(2, 1, 1, 1)
# control_image = self.get_control_depth(
# image=image,
# image_resolution=512,
# detect_resolution=512,
# )
prompts = [prompt] * 2
caption_embs, emb_masks = self.t5_model.get_text_embeddings(prompts)
print(f"processing left-padding...")
new_emb_masks = torch.flip(emb_masks, dims=[-1])
new_caption_embs = []
for idx, (caption_emb,
emb_mask) in enumerate(zip(caption_embs, emb_masks)):
valid_num = int(emb_mask.sum().item())
print(f' prompt {idx} token len: {valid_num}')
new_caption_emb = torch.cat(
[caption_emb[valid_num:], caption_emb[:valid_num]])
new_caption_embs.append(new_caption_emb)
new_caption_embs = torch.stack(new_caption_embs)
c_indices = new_caption_embs * new_emb_masks[:, :, None]
c_emb_masks = new_emb_masks
qzshape = [len(c_indices), 8, H // 16, W // 16]
t1 = time.time()
index_sample = generate(
self.gpt_model_depth,
c_indices,
(H // 16) * (W // 16),
c_emb_masks,
condition=condition_img,
cfg_scale=cfg_scale,
temperature=temperature,
top_k=top_k,
top_p=top_p,
sample_logits=True,
)
sampling_time = time.time() - t1
print(f"Full sampling takes about {sampling_time:.2f} seconds.")
t2 = time.time()
print(index_sample.shape)
samples = self.vq_model.decode_code(index_sample, qzshape)
decoder_time = time.time() - t2
print(f"decoder takes about {decoder_time:.2f} seconds.")
condition_img = condition_img.cpu()
samples = samples.cpu()
samples = torch.cat((condition_img[0:1], samples), dim=0)
samples = 255 * (samples * 0.5 + 0.5)
samples = [image] + [
Image.fromarray(
sample.permute(1, 2, 0).numpy().clip(0, 255).astype(np.uint8))
for sample in samples
]
del image_tensor
del condition_img
torch.cuda.empty_cache()
return samples