wondervictor
update README
2422035
# This is an improved version and model of HED edge detection with Apache License, Version 2.0.
# Please use this implementation in your products
# This implementation may produce slightly different results from Saining Xie's official implementations,
# but it generates smoother edges and is more suitable for ControlNet as well as other image-to-image translations.
# Different from official models and other implementations, this is an RGB-input model (rather than BGR)
# and in this way it works better for gradio's RGB protocol
import os
import cv2
import torch
import numpy as np
from torch.nn.parallel import DataParallel
from einops import rearrange
from condition.utils import annotator_ckpts_path
import torch.nn.functional as F
class DoubleConvBlock(torch.nn.Module):
def __init__(self, input_channel, output_channel, layer_number):
super().__init__()
self.convs = torch.nn.Sequential()
self.convs.append(torch.nn.Conv2d(in_channels=input_channel, out_channels=output_channel, kernel_size=(3, 3), stride=(1, 1), padding=1))
for i in range(1, layer_number):
self.convs.append(torch.nn.Conv2d(in_channels=output_channel, out_channels=output_channel, kernel_size=(3, 3), stride=(1, 1), padding=1))
self.projection = torch.nn.Conv2d(in_channels=output_channel, out_channels=1, kernel_size=(1, 1), stride=(1, 1), padding=0)
def __call__(self, x, down_sampling=False):
h = x
if down_sampling:
h = torch.nn.functional.max_pool2d(h, kernel_size=(2, 2), stride=(2, 2))
for conv in self.convs:
h = conv(h)
h = torch.nn.functional.relu(h)
return h, self.projection(h)
class ControlNetHED_Apache2(torch.nn.Module):
def __init__(self):
super().__init__()
self.norm = torch.nn.Parameter(torch.zeros(size=(1, 3, 1, 1)))
self.block1 = DoubleConvBlock(input_channel=3, output_channel=64, layer_number=2)
self.block2 = DoubleConvBlock(input_channel=64, output_channel=128, layer_number=2)
self.block3 = DoubleConvBlock(input_channel=128, output_channel=256, layer_number=3)
self.block4 = DoubleConvBlock(input_channel=256, output_channel=512, layer_number=3)
self.block5 = DoubleConvBlock(input_channel=512, output_channel=512, layer_number=3)
def __call__(self, x):
h = x - self.norm
h, projection1 = self.block1(h)
h, projection2 = self.block2(h, down_sampling=True)
h, projection3 = self.block3(h, down_sampling=True)
h, projection4 = self.block4(h, down_sampling=True)
h, projection5 = self.block5(h, down_sampling=True)
return projection1, projection2, projection3, projection4, projection5
class HEDdetector(torch.nn.Module):
def __init__(self):
super().__init__()
remote_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/ControlNetHED.pth"
modelpath = os.path.join(annotator_ckpts_path, "ControlNetHED.pth")
if not os.path.exists(modelpath):
from basicsr.utils.download_util import load_file_from_url
load_file_from_url(remote_model_path, model_dir=annotator_ckpts_path)
self.netNetwork = ControlNetHED_Apache2().float()#.to(self.device).eval()
self.netNetwork.load_state_dict(torch.load(modelpath))
def __call__(self, input_image):
"""
input: tensor (B,C,H,W)
output: tensor (B,H,W)
"""
B, C, H, W = input_image.shape
image_hed = input_image
edges = self.netNetwork(image_hed)
edges = [F.interpolate(e, size=(H, W), mode='bilinear', align_corners=False).squeeze(1) for e in edges]
edges = torch.stack(edges, dim=1)
edge = 1 / (1 + torch.exp(-torch.mean(edges, dim=1)))
edge = (edge * 255.0).clamp(0, 255)
return edge
def nms(x, t, s):
x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s)
f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8)
f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8)
f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8)
f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8)
y = np.zeros_like(x)
for f in [f1, f2, f3, f4]:
np.putmask(y, cv2.dilate(x, kernel=f) == x, x)
z = np.zeros_like(y, dtype=np.uint8)
z[y > t] = 255
return z
if __name__ == '__main__':
import matplotlib.pyplot as plt
from tqdm import tqdm
import torch.nn.functional as F
device = torch.device('cuda')
apply_hed = HEDdetector().to(device).eval()
img = cv2.imread('condition/dragon_1024_512.jpg')
H,W = img.shape[:2]
resize_img = cv2.resize(img,(512,1024))
detected_map = apply_hed(torch.from_numpy(img).permute(2,0,1).unsqueeze(0).cuda())
resize_detected_map = apply_hed(torch.from_numpy(resize_img).permute(2,0,1).unsqueeze(0).cuda())
cv2.imwrite('condition/example_hed_resize.jpg', resize_detected_map[0].cpu().detach().numpy())
resize_detected_map = F.interpolate(resize_detected_map.unsqueeze(0).to(torch.float32), size=(H,W), mode='bilinear', align_corners=False, antialias=True)
print(abs(detected_map - resize_detected_map).sum())
print(img.shape, img.max(),img.min(),detected_map.shape, detected_map.max(),detected_map.min())
cv2.imwrite('condition/example_hed.jpg', detected_map[0].cpu().detach().numpy())
cv2.imwrite('condition/example_hed_resized.jpg', resize_detected_map[0,0].cpu().detach().numpy())