Spaces:
Runtime error
Runtime error
# Copyright 2020 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import json | |
import os | |
import pickle | |
import random | |
import time | |
import warnings | |
from typing import Dict, List, Optional | |
import torch | |
from filelock import FileLock | |
from torch.utils.data import Dataset | |
from ...tokenization_utils import PreTrainedTokenizer | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
DEPRECATION_WARNING = ( | |
"This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets " | |
"library. You can have a look at this example script for pointers: {0}" | |
) | |
class TextDataset(Dataset): | |
""" | |
This will be superseded by a framework-agnostic approach soon. | |
""" | |
def __init__( | |
self, | |
tokenizer: PreTrainedTokenizer, | |
file_path: str, | |
block_size: int, | |
overwrite_cache=False, | |
cache_dir: Optional[str] = None, | |
): | |
warnings.warn( | |
DEPRECATION_WARNING.format( | |
"https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py" | |
), | |
FutureWarning, | |
) | |
if os.path.isfile(file_path) is False: | |
raise ValueError(f"Input file path {file_path} not found") | |
block_size = block_size - tokenizer.num_special_tokens_to_add(pair=False) | |
directory, filename = os.path.split(file_path) | |
cached_features_file = os.path.join( | |
cache_dir if cache_dir is not None else directory, | |
f"cached_lm_{tokenizer.__class__.__name__}_{block_size}_{filename}", | |
) | |
# Make sure only the first process in distributed training processes the dataset, | |
# and the others will use the cache. | |
lock_path = cached_features_file + ".lock" | |
with FileLock(lock_path): | |
if os.path.exists(cached_features_file) and not overwrite_cache: | |
start = time.time() | |
with open(cached_features_file, "rb") as handle: | |
self.examples = pickle.load(handle) | |
logger.info( | |
f"Loading features from cached file {cached_features_file} [took %.3f s]", time.time() - start | |
) | |
else: | |
logger.info(f"Creating features from dataset file at {directory}") | |
self.examples = [] | |
with open(file_path, encoding="utf-8") as f: | |
text = f.read() | |
tokenized_text = tokenizer.convert_tokens_to_ids(tokenizer.tokenize(text)) | |
for i in range(0, len(tokenized_text) - block_size + 1, block_size): # Truncate in block of block_size | |
self.examples.append( | |
tokenizer.build_inputs_with_special_tokens(tokenized_text[i : i + block_size]) | |
) | |
# Note that we are losing the last truncated example here for the sake of simplicity (no padding) | |
# If your dataset is small, first you should look for a bigger one :-) and second you | |
# can change this behavior by adding (model specific) padding. | |
start = time.time() | |
with open(cached_features_file, "wb") as handle: | |
pickle.dump(self.examples, handle, protocol=pickle.HIGHEST_PROTOCOL) | |
logger.info( | |
f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]" | |
) | |
def __len__(self): | |
return len(self.examples) | |
def __getitem__(self, i) -> torch.Tensor: | |
return torch.tensor(self.examples[i], dtype=torch.long) | |
class LineByLineTextDataset(Dataset): | |
""" | |
This will be superseded by a framework-agnostic approach soon. | |
""" | |
def __init__(self, tokenizer: PreTrainedTokenizer, file_path: str, block_size: int): | |
warnings.warn( | |
DEPRECATION_WARNING.format( | |
"https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py" | |
), | |
FutureWarning, | |
) | |
if os.path.isfile(file_path) is False: | |
raise ValueError(f"Input file path {file_path} not found") | |
# Here, we do not cache the features, operating under the assumption | |
# that we will soon use fast multithreaded tokenizers from the | |
# `tokenizers` repo everywhere =) | |
logger.info(f"Creating features from dataset file at {file_path}") | |
with open(file_path, encoding="utf-8") as f: | |
lines = [line for line in f.read().splitlines() if (len(line) > 0 and not line.isspace())] | |
batch_encoding = tokenizer(lines, add_special_tokens=True, truncation=True, max_length=block_size) | |
self.examples = batch_encoding["input_ids"] | |
self.examples = [{"input_ids": torch.tensor(e, dtype=torch.long)} for e in self.examples] | |
def __len__(self): | |
return len(self.examples) | |
def __getitem__(self, i) -> Dict[str, torch.tensor]: | |
return self.examples[i] | |
class LineByLineWithRefDataset(Dataset): | |
""" | |
This will be superseded by a framework-agnostic approach soon. | |
""" | |
def __init__(self, tokenizer: PreTrainedTokenizer, file_path: str, block_size: int, ref_path: str): | |
warnings.warn( | |
DEPRECATION_WARNING.format( | |
"https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm_wwm.py" | |
), | |
FutureWarning, | |
) | |
if os.path.isfile(file_path) is False: | |
raise ValueError(f"Input file path {file_path} not found") | |
if os.path.isfile(ref_path) is False: | |
raise ValueError(f"Ref file path {file_path} not found") | |
# Here, we do not cache the features, operating under the assumption | |
# that we will soon use fast multithreaded tokenizers from the | |
# `tokenizers` repo everywhere =) | |
logger.info(f"Creating features from dataset file at {file_path}") | |
logger.info(f"Use ref segment results at {ref_path}") | |
with open(file_path, encoding="utf-8") as f: | |
data = f.readlines() # use this method to avoid delimiter '\u2029' to split a line | |
data = [line.strip() for line in data if len(line) > 0 and not line.isspace()] | |
# Get ref inf from file | |
with open(ref_path, encoding="utf-8") as f: | |
ref = [json.loads(line) for line in f.read().splitlines() if (len(line) > 0 and not line.isspace())] | |
if len(data) != len(ref): | |
raise ValueError( | |
f"Length of Input file should be equal to Ref file. But the length of {file_path} is {len(data)} " | |
f"while length of {ref_path} is {len(ref)}" | |
) | |
batch_encoding = tokenizer(data, add_special_tokens=True, truncation=True, max_length=block_size) | |
self.examples = batch_encoding["input_ids"] | |
self.examples = [{"input_ids": torch.tensor(e, dtype=torch.long)} for e in self.examples] | |
n = len(self.examples) | |
for i in range(n): | |
self.examples[i]["chinese_ref"] = torch.tensor(ref[i], dtype=torch.long) | |
def __len__(self): | |
return len(self.examples) | |
def __getitem__(self, i) -> Dict[str, torch.tensor]: | |
return self.examples[i] | |
class LineByLineWithSOPTextDataset(Dataset): | |
""" | |
Dataset for sentence order prediction task, prepare sentence pairs for SOP task | |
""" | |
def __init__(self, tokenizer: PreTrainedTokenizer, file_dir: str, block_size: int): | |
warnings.warn( | |
DEPRECATION_WARNING.format( | |
"https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py" | |
), | |
FutureWarning, | |
) | |
if os.path.isdir(file_dir) is False: | |
raise ValueError(f"{file_dir} is not a directory") | |
logger.info(f"Creating features from dataset file folder at {file_dir}") | |
self.examples = [] | |
# TODO: randomness could apply a random seed, ex. rng = random.Random(random_seed) | |
# file path looks like ./dataset/wiki_1, ./dataset/wiki_2 | |
for file_name in os.listdir(file_dir): | |
file_path = os.path.join(file_dir, file_name) | |
if os.path.isfile(file_path) is False: | |
raise ValueError(f"{file_path} is not a file") | |
article_open = False | |
with open(file_path, encoding="utf-8") as f: | |
original_lines = f.readlines() | |
article_lines = [] | |
for line in original_lines: | |
if "<doc id=" in line: | |
article_open = True | |
elif "</doc>" in line: | |
article_open = False | |
document = [ | |
tokenizer.convert_tokens_to_ids(tokenizer.tokenize(line)) | |
for line in article_lines[1:] | |
if (len(line) > 0 and not line.isspace()) | |
] | |
examples = self.create_examples_from_document(document, block_size, tokenizer) | |
self.examples.extend(examples) | |
article_lines = [] | |
else: | |
if article_open: | |
article_lines.append(line) | |
logger.info("Dataset parse finished.") | |
def create_examples_from_document(self, document, block_size, tokenizer, short_seq_prob=0.1): | |
"""Creates examples for a single document.""" | |
# Account for special tokens | |
max_num_tokens = block_size - tokenizer.num_special_tokens_to_add(pair=True) | |
# We *usually* want to fill up the entire sequence since we are padding | |
# to `block_size` anyways, so short sequences are generally wasted | |
# computation. However, we *sometimes* | |
# (i.e., short_seq_prob == 0.1 == 10% of the time) want to use shorter | |
# sequences to minimize the mismatch between pretraining and fine-tuning. | |
# The `target_seq_length` is just a rough target however, whereas | |
# `block_size` is a hard limit. | |
target_seq_length = max_num_tokens | |
if random.random() < short_seq_prob: | |
target_seq_length = random.randint(2, max_num_tokens) | |
# We DON'T just concatenate all of the tokens from a document into a long | |
# sequence and choose an arbitrary split point because this would make the | |
# next sentence prediction task too easy. Instead, we split the input into | |
# segments "A" and "B" based on the actual "sentences" provided by the user | |
# input. | |
examples = [] | |
current_chunk = [] # a buffer stored current working segments | |
current_length = 0 | |
i = 0 | |
while i < len(document): | |
segment = document[i] # get a segment | |
if not segment: | |
i += 1 | |
continue | |
current_chunk.append(segment) # add a segment to current chunk | |
current_length += len(segment) # overall token length | |
# if current length goes to the target length or reaches the end of file, start building token a and b | |
if i == len(document) - 1 or current_length >= target_seq_length: | |
if current_chunk: | |
# `a_end` is how many segments from `current_chunk` go into the `A` (first) sentence. | |
a_end = 1 | |
# if current chunk has more than 2 sentences, pick part of it `A` (first) sentence | |
if len(current_chunk) >= 2: | |
a_end = random.randint(1, len(current_chunk) - 1) | |
# token a | |
tokens_a = [] | |
for j in range(a_end): | |
tokens_a.extend(current_chunk[j]) | |
# token b | |
tokens_b = [] | |
for j in range(a_end, len(current_chunk)): | |
tokens_b.extend(current_chunk[j]) | |
if len(tokens_a) == 0 or len(tokens_b) == 0: | |
continue | |
# switch tokens_a and tokens_b randomly | |
if random.random() < 0.5: | |
is_next = False | |
tokens_a, tokens_b = tokens_b, tokens_a | |
else: | |
is_next = True | |
def truncate_seq_pair(tokens_a, tokens_b, max_num_tokens): | |
"""Truncates a pair of sequences to a maximum sequence length.""" | |
while True: | |
total_length = len(tokens_a) + len(tokens_b) | |
if total_length <= max_num_tokens: | |
break | |
trunc_tokens = tokens_a if len(tokens_a) > len(tokens_b) else tokens_b | |
if not (len(trunc_tokens) >= 1): | |
raise ValueError("Sequence length to be truncated must be no less than one") | |
# We want to sometimes truncate from the front and sometimes from the | |
# back to add more randomness and avoid biases. | |
if random.random() < 0.5: | |
del trunc_tokens[0] | |
else: | |
trunc_tokens.pop() | |
truncate_seq_pair(tokens_a, tokens_b, max_num_tokens) | |
if not (len(tokens_a) >= 1): | |
raise ValueError(f"Length of sequence a is {len(tokens_a)} which must be no less than 1") | |
if not (len(tokens_b) >= 1): | |
raise ValueError(f"Length of sequence b is {len(tokens_b)} which must be no less than 1") | |
# add special tokens | |
input_ids = tokenizer.build_inputs_with_special_tokens(tokens_a, tokens_b) | |
# add token type ids, 0 for sentence a, 1 for sentence b | |
token_type_ids = tokenizer.create_token_type_ids_from_sequences(tokens_a, tokens_b) | |
example = { | |
"input_ids": torch.tensor(input_ids, dtype=torch.long), | |
"token_type_ids": torch.tensor(token_type_ids, dtype=torch.long), | |
"sentence_order_label": torch.tensor(0 if is_next else 1, dtype=torch.long), | |
} | |
examples.append(example) | |
current_chunk = [] # clear current chunk | |
current_length = 0 # reset current text length | |
i += 1 # go to next line | |
return examples | |
def __len__(self): | |
return len(self.examples) | |
def __getitem__(self, i) -> Dict[str, torch.tensor]: | |
return self.examples[i] | |
class TextDatasetForNextSentencePrediction(Dataset): | |
""" | |
This will be superseded by a framework-agnostic approach soon. | |
""" | |
def __init__( | |
self, | |
tokenizer: PreTrainedTokenizer, | |
file_path: str, | |
block_size: int, | |
overwrite_cache=False, | |
short_seq_probability=0.1, | |
nsp_probability=0.5, | |
): | |
warnings.warn( | |
DEPRECATION_WARNING.format( | |
"https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py" | |
), | |
FutureWarning, | |
) | |
if not os.path.isfile(file_path): | |
raise ValueError(f"Input file path {file_path} not found") | |
self.short_seq_probability = short_seq_probability | |
self.nsp_probability = nsp_probability | |
directory, filename = os.path.split(file_path) | |
cached_features_file = os.path.join( | |
directory, | |
f"cached_nsp_{tokenizer.__class__.__name__}_{block_size}_{filename}", | |
) | |
self.tokenizer = tokenizer | |
# Make sure only the first process in distributed training processes the dataset, | |
# and the others will use the cache. | |
lock_path = cached_features_file + ".lock" | |
# Input file format: | |
# (1) One sentence per line. These should ideally be actual sentences, not | |
# entire paragraphs or arbitrary spans of text. (Because we use the | |
# sentence boundaries for the "next sentence prediction" task). | |
# (2) Blank lines between documents. Document boundaries are needed so | |
# that the "next sentence prediction" task doesn't span between documents. | |
# | |
# Example: | |
# I am very happy. | |
# Here is the second sentence. | |
# | |
# A new document. | |
with FileLock(lock_path): | |
if os.path.exists(cached_features_file) and not overwrite_cache: | |
start = time.time() | |
with open(cached_features_file, "rb") as handle: | |
self.examples = pickle.load(handle) | |
logger.info( | |
f"Loading features from cached file {cached_features_file} [took %.3f s]", time.time() - start | |
) | |
else: | |
logger.info(f"Creating features from dataset file at {directory}") | |
self.documents = [[]] | |
with open(file_path, encoding="utf-8") as f: | |
while True: | |
line = f.readline() | |
if not line: | |
break | |
line = line.strip() | |
# Empty lines are used as document delimiters | |
if not line and len(self.documents[-1]) != 0: | |
self.documents.append([]) | |
tokens = tokenizer.tokenize(line) | |
tokens = tokenizer.convert_tokens_to_ids(tokens) | |
if tokens: | |
self.documents[-1].append(tokens) | |
logger.info(f"Creating examples from {len(self.documents)} documents.") | |
self.examples = [] | |
for doc_index, document in enumerate(self.documents): | |
self.create_examples_from_document(document, doc_index, block_size) | |
start = time.time() | |
with open(cached_features_file, "wb") as handle: | |
pickle.dump(self.examples, handle, protocol=pickle.HIGHEST_PROTOCOL) | |
logger.info( | |
f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]" | |
) | |
def create_examples_from_document(self, document: List[List[int]], doc_index: int, block_size: int): | |
"""Creates examples for a single document.""" | |
max_num_tokens = block_size - self.tokenizer.num_special_tokens_to_add(pair=True) | |
# We *usually* want to fill up the entire sequence since we are padding | |
# to `block_size` anyways, so short sequences are generally wasted | |
# computation. However, we *sometimes* | |
# (i.e., short_seq_prob == 0.1 == 10% of the time) want to use shorter | |
# sequences to minimize the mismatch between pretraining and fine-tuning. | |
# The `target_seq_length` is just a rough target however, whereas | |
# `block_size` is a hard limit. | |
target_seq_length = max_num_tokens | |
if random.random() < self.short_seq_probability: | |
target_seq_length = random.randint(2, max_num_tokens) | |
current_chunk = [] # a buffer stored current working segments | |
current_length = 0 | |
i = 0 | |
while i < len(document): | |
segment = document[i] | |
current_chunk.append(segment) | |
current_length += len(segment) | |
if i == len(document) - 1 or current_length >= target_seq_length: | |
if current_chunk: | |
# `a_end` is how many segments from `current_chunk` go into the `A` | |
# (first) sentence. | |
a_end = 1 | |
if len(current_chunk) >= 2: | |
a_end = random.randint(1, len(current_chunk) - 1) | |
tokens_a = [] | |
for j in range(a_end): | |
tokens_a.extend(current_chunk[j]) | |
tokens_b = [] | |
if len(current_chunk) == 1 or random.random() < self.nsp_probability: | |
is_random_next = True | |
target_b_length = target_seq_length - len(tokens_a) | |
# This should rarely go for more than one iteration for large | |
# corpora. However, just to be careful, we try to make sure that | |
# the random document is not the same as the document | |
# we're processing. | |
for _ in range(10): | |
random_document_index = random.randint(0, len(self.documents) - 1) | |
if random_document_index != doc_index: | |
break | |
random_document = self.documents[random_document_index] | |
random_start = random.randint(0, len(random_document) - 1) | |
for j in range(random_start, len(random_document)): | |
tokens_b.extend(random_document[j]) | |
if len(tokens_b) >= target_b_length: | |
break | |
# We didn't actually use these segments so we "put them back" so | |
# they don't go to waste. | |
num_unused_segments = len(current_chunk) - a_end | |
i -= num_unused_segments | |
# Actual next | |
else: | |
is_random_next = False | |
for j in range(a_end, len(current_chunk)): | |
tokens_b.extend(current_chunk[j]) | |
if not (len(tokens_a) >= 1): | |
raise ValueError(f"Length of sequence a is {len(tokens_a)} which must be no less than 1") | |
if not (len(tokens_b) >= 1): | |
raise ValueError(f"Length of sequence b is {len(tokens_b)} which must be no less than 1") | |
# add special tokens | |
input_ids = self.tokenizer.build_inputs_with_special_tokens(tokens_a, tokens_b) | |
# add token type ids, 0 for sentence a, 1 for sentence b | |
token_type_ids = self.tokenizer.create_token_type_ids_from_sequences(tokens_a, tokens_b) | |
example = { | |
"input_ids": torch.tensor(input_ids, dtype=torch.long), | |
"token_type_ids": torch.tensor(token_type_ids, dtype=torch.long), | |
"next_sentence_label": torch.tensor(1 if is_random_next else 0, dtype=torch.long), | |
} | |
self.examples.append(example) | |
current_chunk = [] | |
current_length = 0 | |
i += 1 | |
def __len__(self): | |
return len(self.examples) | |
def __getitem__(self, i): | |
return self.examples[i] | |