Spaces:
Running
Running
""" | |
TODO: 繁体、简体、语种、 | |
""" | |
import os | |
import json | |
from collections import Counter | |
from vocab import load_tokener | |
from utils.log_util import logger | |
from utils.text_util import is_all_digit, has_digit, get_digit_count, get_space_count | |
from utils.lang_util import detect_language | |
from utils.lang_util_2 import is_zh_char, is_all_zh, get_zh_count | |
CURRENT_DIR = os.path.dirname(os.path.abspath(__file__)) | |
zh_tokens = [line.strip() for line in open(os.path.join(CURRENT_DIR, "vocab.jd.txt.v2"), "r", encoding="utf-8") if | |
is_zh_char(line.strip())] | |
def digit_(): | |
""" | |
qwen segments numbers by single digits. | |
""" | |
pass | |
def to_unicode(text): | |
return ''.join(r'\u{:04X}'.format(ord(chr)) for chr in text) | |
def zh_iterator(): | |
for idx in range(ord(u'\u4e00'), ord(u'\u9fa5')): | |
yield (chr(idx)) | |
def get_coding_length(tokenizer, vocab, filter=None): | |
""" | |
计算编码长度。(有些中文汉字被解码成多个token) | |
""" | |
all_length = [] | |
for word in vocab: | |
if len(word) > 1: | |
continue | |
if filter is not None and filter(word): | |
continue | |
try: | |
tokens = tokenizer.encode(word) | |
except Exception as e: | |
print(e) | |
all_length.append(len(tokens)) | |
# if len(tokens.ids) > 1: | |
# if len(tokens) > 3: | |
# print(word, tokens) | |
dist_length = Counter(all_length) | |
mean_length = round(sum(all_length) / len(all_length), 2) | |
return dist_length, mean_length | |
def remove_special_char(): | |
""" | |
:return: | |
""" | |
# bert词典有 ##开头的 | |
# byteBPE词典有带空格的 | |
# decode_str = decode_str.strip().replace("#", "") # TODO, 按类型 | |
pass | |
cache = {} | |
def _mean(datas): | |
return sum(datas) / len(datas) | |
def iter_vocab(tokenizer_name, from_cache=True, cache_dir="stats/iter_vocab"): | |
""" | |
由于速度较快,建议不采用文件缓存。 | |
:param tokenizer: | |
:param from_cache: | |
:return: | |
""" | |
cache_dir = os.path.join(CURRENT_DIR, f"../{cache_dir}") | |
os.makedirs(cache_dir, exist_ok=True) | |
tokenizer = load_tokener(tokenizer_name) | |
# load from cache | |
if from_cache and tokenizer_name in cache: | |
logger.info(f"load {tokenizer_name} from cache") | |
return cache[tokenizer_name] | |
has_zh_tokens = [] | |
all_zh_tokens = [] | |
has_digit_tokens = [] | |
all_digit_tokens = [] | |
has_space_tokens = [] | |
all_space_tokens = [] | |
# zh_tags = ["all_zh", "has_zh"] | |
# digit_tags = ["all_digit", "has_digit"] | |
# zh_token_count = {"total": 0, "包含1个中文单字": 0, "中文多字": 0} | |
# symbol_count = 0 | |
all_single_zh_tokens = set() | |
zh_symbol_count = 0 | |
buffer = [] | |
for token_id in range(tokenizer.vocab_size): | |
decode_str = tokenizer.decode([token_id], skip_special_tokens=False) | |
token = tokenizer.convert_ids_to_tokens([token_id], skip_special_tokens=False)[0] | |
# tokenizer.convert_tokens_to_string(tokens) | |
tags = [] | |
if token is None: # 有些词典有空的id(不连续) | |
continue | |
if isinstance(token, bytes): | |
token = token.decode("utf-8", errors="ignore") | |
digit_count = get_digit_count(decode_str) | |
language_tags = detect_language(decode_str) | |
if "Chinese" in language_tags: | |
has_zh_tokens.append(decode_str) | |
if is_all_zh(decode_str): | |
tags.append("all_zh") | |
all_zh_tokens.append(decode_str) | |
if is_all_digit(decode_str): | |
tags.append("all_digit") | |
all_digit_tokens.append(decode_str) | |
if has_digit(decode_str): | |
tags.append("has_digit") | |
has_digit_tokens.append(decode_str) | |
space_count = get_space_count(decode_str) | |
if space_count > 0: | |
has_space_tokens.append(decode_str) | |
if space_count == len(decode_str): | |
all_space_tokens.append(decode_str) | |
zh_count = get_zh_count(decode_str) | |
buffer.append(json.dumps( | |
{"id": token_id, | |
"token": token, | |
"token_decode": decode_str, | |
"token_dumps": json.dumps(token), | |
"token_unicode": to_unicode(token), | |
"token_len": len(decode_str), | |
"zh_count": zh_count, # 包含汉字的数目 | |
# "zh-smpli": zh_hans_count, # 简体中文 zh-Hans | |
"tags": tags, | |
"zh_symbol_count": zh_symbol_count, | |
}, | |
ensure_ascii=False) + "\n") | |
# if zh_count >= 1: | |
# zh_token_count["total"] += 1 | |
# if zh_count > 1: | |
# zh_token_count["中文多字"] += 1 | |
# else: | |
# zh_token_count["中文单字"] += 1 | |
# all_single_zh_tokens.add(decode_str.strip().replace("#", "")) | |
# | |
# zh_token_count["中文单字-去重后"] = len(all_single_zh_tokens) | |
dist_length, mean_length = get_coding_length(tokenizer, zh_tokens, filter=lambda k: not is_zh_char(k)) | |
# TODO: 繁体字,简体字 | |
result = { | |
"name": tokenizer_name, | |
"impl": str(tokenizer.__class__), | |
"vocab_size": len(tokenizer), | |
"中文token数": len(has_zh_tokens), | |
"中文token的平均长度": None, | |
"纯中文token的平均长度": None, | |
"中文标点数": zh_symbol_count, | |
"中文汉字编码长度均值": mean_length, | |
"中文汉字编码长度分布": json.dumps(dist_length), | |
"纯数字token数": len(all_digit_tokens), | |
"包含数字token数": len(has_digit_tokens), | |
"纯数字token的平均长度": round(_mean([len(item) for item in all_digit_tokens]), 2), | |
"纯中文token数": None, # all_zh | |
"纯space的token数": len(all_space_tokens), | |
"纯space的token数": len(all_space_tokens), # "#" | |
"纯space的token的平均长度": None, # avg_len( tokens_contains_space) | |
"contains_korea": None, | |
} | |
out_path = os.path.join(cache_dir, f"{tokenizer_name}.vocab.jsonl") | |
logger.info(f"saving vocab to {out_path}") | |
with open(out_path, "w", encoding="utf-8") as f_out: | |
f_out.write(json.dumps(result, ensure_ascii=False) + "\n") | |
for line in buffer: | |
f_out.write(line) | |
cache[tokenizer_name] = result | |
return result | |
if __name__ == "__main__": | |
# test_coding_length(jd_vocab_tokens, filter=lambda k: not is_chinese(k)) | |
# test_coding_length(zh_punc) | |
# test_coding_length(zh_iterator()) | |
# from vocab.chatglm2_6b import tokenizer; name = "chatglm2_6b" | |
# from vocab.chatglm_6b import tokenizer; name="chatglm_6b" | |
# from vocab.baichuan2 import tokenizer; name="baichuan2" | |
name="gpt_4" | |
# name="gpt2" | |
# name="qwen1_5_14b_chat" | |
# name="gpt_nexo_20b" | |
# name="fastchat_t5_3b" | |
print(iter_vocab(name)) | |