tokenizer-arena / utils /character_util.py
xu-song's picture
add compression leaderboard
1b7fc74
raw
history blame
6.92 kB
"""
TODO: 繁体、简体、语种、
"""
import os
import json
from collections import Counter
from vocab import load_tokener
from utils.log_util import logger
from utils.text_util import is_all_digit, has_digit, get_digit_count, get_space_count
from utils.lang_util import detect_language
from utils.lang_util_2 import is_zh_char, is_all_zh, get_zh_count
CURRENT_DIR = os.path.dirname(os.path.abspath(__file__))
zh_tokens = [line.strip() for line in open(os.path.join(CURRENT_DIR, "vocab.jd.txt.v2"), "r", encoding="utf-8") if
is_zh_char(line.strip())]
def digit_():
"""
qwen segments numbers by single digits.
"""
pass
def to_unicode(text):
return ''.join(r'\u{:04X}'.format(ord(chr)) for chr in text)
def zh_iterator():
for idx in range(ord(u'\u4e00'), ord(u'\u9fa5')):
yield (chr(idx))
def get_coding_length(tokenizer, vocab, filter=None):
"""
计算编码长度。(有些中文汉字被解码成多个token)
"""
all_length = []
for word in vocab:
if len(word) > 1:
continue
if filter is not None and filter(word):
continue
try:
tokens = tokenizer.encode(word)
except Exception as e:
print(e)
all_length.append(len(tokens))
# if len(tokens.ids) > 1:
# if len(tokens) > 3:
# print(word, tokens)
dist_length = Counter(all_length)
mean_length = round(sum(all_length) / len(all_length), 2)
return dist_length, mean_length
def remove_special_char():
"""
:return:
"""
# bert词典有 ##开头的
# byteBPE词典有带空格的
# decode_str = decode_str.strip().replace("#", "") # TODO, 按类型
pass
cache = {}
def _mean(datas):
return sum(datas) / len(datas)
def iter_vocab(tokenizer_name, from_cache=True, cache_dir="stats/iter_vocab"):
"""
由于速度较快,建议不采用文件缓存。
:param tokenizer:
:param from_cache:
:return:
"""
cache_dir = os.path.join(CURRENT_DIR, f"../{cache_dir}")
os.makedirs(cache_dir, exist_ok=True)
tokenizer = load_tokener(tokenizer_name)
# load from cache
if from_cache and tokenizer_name in cache:
logger.info(f"load {tokenizer_name} from cache")
return cache[tokenizer_name]
has_zh_tokens = []
all_zh_tokens = []
has_digit_tokens = []
all_digit_tokens = []
has_space_tokens = []
all_space_tokens = []
# zh_tags = ["all_zh", "has_zh"]
# digit_tags = ["all_digit", "has_digit"]
# zh_token_count = {"total": 0, "包含1个中文单字": 0, "中文多字": 0}
# symbol_count = 0
all_single_zh_tokens = set()
zh_symbol_count = 0
buffer = []
for token_id in range(tokenizer.vocab_size):
decode_str = tokenizer.decode([token_id], skip_special_tokens=False)
token = tokenizer.convert_ids_to_tokens([token_id], skip_special_tokens=False)[0]
# tokenizer.convert_tokens_to_string(tokens)
tags = []
if token is None: # 有些词典有空的id(不连续)
continue
if isinstance(token, bytes):
token = token.decode("utf-8", errors="ignore")
digit_count = get_digit_count(decode_str)
language_tags = detect_language(decode_str)
if "Chinese" in language_tags:
has_zh_tokens.append(decode_str)
if is_all_zh(decode_str):
tags.append("all_zh")
all_zh_tokens.append(decode_str)
if is_all_digit(decode_str):
tags.append("all_digit")
all_digit_tokens.append(decode_str)
if has_digit(decode_str):
tags.append("has_digit")
has_digit_tokens.append(decode_str)
space_count = get_space_count(decode_str)
if space_count > 0:
has_space_tokens.append(decode_str)
if space_count == len(decode_str):
all_space_tokens.append(decode_str)
zh_count = get_zh_count(decode_str)
buffer.append(json.dumps(
{"id": token_id,
"token": token,
"token_decode": decode_str,
"token_dumps": json.dumps(token),
"token_unicode": to_unicode(token),
"token_len": len(decode_str),
"zh_count": zh_count, # 包含汉字的数目
# "zh-smpli": zh_hans_count, # 简体中文 zh-Hans
"tags": tags,
"zh_symbol_count": zh_symbol_count,
},
ensure_ascii=False) + "\n")
# if zh_count >= 1:
# zh_token_count["total"] += 1
# if zh_count > 1:
# zh_token_count["中文多字"] += 1
# else:
# zh_token_count["中文单字"] += 1
# all_single_zh_tokens.add(decode_str.strip().replace("#", ""))
#
# zh_token_count["中文单字-去重后"] = len(all_single_zh_tokens)
dist_length, mean_length = get_coding_length(tokenizer, zh_tokens, filter=lambda k: not is_zh_char(k))
# TODO: 繁体字,简体字
result = {
"name": tokenizer_name,
"impl": str(tokenizer.__class__),
"vocab_size": len(tokenizer),
"中文token数": len(has_zh_tokens),
"中文token的平均长度": None,
"纯中文token的平均长度": None,
"中文标点数": zh_symbol_count,
"中文汉字编码长度均值": mean_length,
"中文汉字编码长度分布": json.dumps(dist_length),
"纯数字token数": len(all_digit_tokens),
"包含数字token数": len(has_digit_tokens),
"纯数字token的平均长度": round(_mean([len(item) for item in all_digit_tokens]), 2),
"纯中文token数": None, # all_zh
"纯space的token数": len(all_space_tokens),
"纯space的token数": len(all_space_tokens), # "#"
"纯space的token的平均长度": None, # avg_len( tokens_contains_space)
"contains_korea": None,
}
out_path = os.path.join(cache_dir, f"{tokenizer_name}.vocab.jsonl")
logger.info(f"saving vocab to {out_path}")
with open(out_path, "w", encoding="utf-8") as f_out:
f_out.write(json.dumps(result, ensure_ascii=False) + "\n")
for line in buffer:
f_out.write(line)
cache[tokenizer_name] = result
return result
if __name__ == "__main__":
# test_coding_length(jd_vocab_tokens, filter=lambda k: not is_chinese(k))
# test_coding_length(zh_punc)
# test_coding_length(zh_iterator())
# from vocab.chatglm2_6b import tokenizer; name = "chatglm2_6b"
# from vocab.chatglm_6b import tokenizer; name="chatglm_6b"
# from vocab.baichuan2 import tokenizer; name="baichuan2"
name="gpt_4"
# name="gpt2"
# name="qwen1_5_14b_chat"
# name="gpt_nexo_20b"
# name="fastchat_t5_3b"
print(iter_vocab(name))