yama commited on
Commit
f88322e
1 Parent(s): 9e020be

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +270 -263
app.py CHANGED
@@ -1,288 +1,295 @@
 
 
 
 
 
 
 
 
 
1
  import os
2
- import wave
3
  import numpy as np
4
- import contextlib
5
- from pydub import AudioSegment
6
- from pyannote.core import Segment
7
- from pyannote.audio import Audio
8
- from pyannote.audio.pipelines.speaker_verification import PretrainedSpeakerEmbedding
9
- import torch
10
- from typing import Dict, List, Tuple
11
-
12
-
13
- def convert_to_wav(input_file: str, output_file: str = "output_file.wav") -> str:
14
- """
15
- 音声ファイルをWAV形式に変換します。
16
-
17
- Parameters
18
- ----------
19
- input_file: str
20
- 変換する音声ファイルのパス
21
- output_file: str
22
- 変換後のWAVファイルの出力先パス(デフォルトは"output_file.wav")
23
- Returns
24
- -------
25
- str
26
- 変換後のWAVファイルのパス
27
- """
28
- file_format = os.path.splitext(input_file)[1][1:]
29
- audio = AudioSegment.from_file(input_file, format=file_format)
30
- audio.export(output_file, format="wav")
31
- return output_file
32
-
33
-
34
- def segment_embedding(
35
- file_name: str,
36
- duration: float,
37
- segment,
38
- embedding_model: PretrainedSpeakerEmbedding
39
- ) -> np.ndarray:
40
- """
41
- 音声ファイルから指定されたセグメントの埋め込みを計算します。
42
-
43
- Parameters
44
- ----------
45
- file_name: str
46
- 音声ファイルのパス
47
- duration: float
48
- 音声ファイルの継続時間
49
- segment: whisperのtranscribeのsegment
50
- embedding_model: PretrainedSpeakerEmbedding
51
- 埋め込みモデル
52
- Returns
53
- -------
54
- np.ndarray
55
- 計算された埋め込みベクトル
56
- """
57
- audio = Audio()
58
- start = segment["start"]
59
- end = min(duration, segment["end"])
60
- clip = Segment(start, end)
61
- waveform, sample_rate = audio.crop(file_name, clip)
62
- return embedding_model(waveform[None])
63
-
64
-
65
- def reference_audio_embedding(
66
- file_name: str
67
- ) -> np.ndarray:
68
- """
69
- 参考音声の埋め込みを出力します。
70
-
71
- Parameters
72
- ----------
73
- file_name: str
74
- 音声ファイルのパス
75
- Returns
76
- -------
77
- np.ndarray
78
- 計算された埋め込みベクトル
79
- """
80
- audio = Audio()
81
- waveform, sample_rate = audio(file_name)
82
- embedding_model = embedding_model = PretrainedSpeakerEmbedding("speechbrain/spkrec-ecapa-voxceleb", device='cpu')
83
- return embedding_model(waveform[None])[0]
84
-
85
-
86
- def generate_speaker_embeddings(
87
- meeting_file_path: str,
88
- transcript
89
- ) -> np.ndarray:
90
- """
91
- 音声ファイルから話者の埋め込みを計算します。
92
-
93
- Parameters
94
- ----------
95
- meeting_file_path: str
96
- 音声ファイルのパス
97
- transcript: Whisper API の transcribe メソッドの出力結果
98
- Returns
99
- -------
100
- np.ndarray
101
- 計算された話者の埋め込み群
102
- """
103
- output_file = convert_to_wav(meeting_file_path)
104
 
105
- segments = transcript['segments']
106
- embedding_model = PretrainedSpeakerEmbedding("speechbrain/spkrec-ecapa-voxceleb", device='cpu')
107
- embeddings = np.zeros(shape=(len(segments), 192))
 
 
 
 
108
 
109
- with contextlib.closing(wave.open(output_file, 'r')) as f:
110
- frames = f.getnframes()
111
- rate = f.getframerate()
112
- duration = frames / float(rate)
113
 
114
- for i, segment in enumerate(segments):
115
- embeddings[i] = segment_embedding(output_file, duration, segment, embedding_model)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
116
 
117
- embeddings = np.nan_to_num(embeddings)
118
- return embeddings
 
119
 
120
 
121
- import numpy as np
122
- from sklearn.cluster import AgglomerativeClustering
123
- from typing import List, Tuple
 
 
 
 
124
 
 
 
125
 
126
- def clustering_embeddings(speaker_count: int, embeddings: np.ndarray) -> AgglomerativeClustering:
127
- """
128
- 埋め込みデータをクラスタリングして、クラスタリングオブジェクトを返します。
129
- Parameters
130
- ----------
131
- embeddings: np.ndarray
132
- 分散表現(埋め込み)のリスト。
133
- Returns
134
- -------
135
- AgglomerativeClustering
136
- クラスタリングオブジェクト。
137
- """
138
- clustering = AgglomerativeClustering(speaker_count).fit(embeddings)
139
- return clustering
140
 
 
141
 
142
- def format_speaker_output_by_segment(clustering: AgglomerativeClustering, transcript: dict) -> str:
143
- """
144
- クラスタリングの結果をもとに、各発話者ごとにセグメントを整形して出力します
145
- Parameters
146
- ----------
147
- clustering: AgglomerativeClustering
148
- クラスタリングオブジェクト。
149
- transcript: dict
150
- Whisper API の transcribe メソッドの出力結果
151
- Returns
152
- -------
153
- str
154
- 発話者ごとに整形されたセグメントの文字列
155
- """
156
- labeled_segments = []
157
- for label, segment in zip(clustering.labels_, transcript["segments"]):
158
- labeled_segments.append((label, segment["start"], segment["text"]))
159
 
160
- output = ""
161
- for speaker, _, text in labeled_segments:
162
- output += f"話者{speaker + 1}: 「{text}」\n"
163
- return output
164
 
 
 
165
 
166
- from sklearn.cluster import KMeans
167
- from sklearn.metrics.pairwise import pairwise_distances
168
 
 
 
 
169
 
170
- def clustering_embeddings2(speaker_count: int, embeddings: np.ndarray) -> KMeans:
171
- """
172
- 埋め込みデータをクラスタリングして、クラスタリングオブジェクトを返します。
173
- Parameters
174
- ----------
175
- embeddings: np.ndarray
176
- 分散表現(埋め込み)のリスト。
177
- Returns
178
- -------
179
- KMeans
180
- クラスタリングオブジェクト。
181
- """
182
- # コサイン類似度行列を計算
183
- cosine_distances = pairwise_distances(embeddings, metric='cosine')
184
- clustering = KMeans(n_clusters=speaker_count).fit(cosine_distances)
185
- return clustering
186
 
 
 
 
 
187
 
188
- from scipy.spatial.distance import cosine
 
 
189
 
190
 
191
- def closest_reference_speaker(embedding: np.ndarray, references: List[Tuple[str, np.ndarray]]) -> str:
192
- """
193
- 与えられた埋め込みに最も近い参照話者を返します。
194
- Parameters
195
- ----------
196
- embedding: np.ndarray
197
- 話者の埋め込み
198
- references: List[Tuple[str, np.ndarray]]
199
- 参照話者の名前と埋め込みのリスト
200
- Returns
201
- -------
202
- str
203
- 最も近い参照話者の名前
204
  """
205
- min_distance = float('inf')
206
- closest_speaker = None
207
- for name, reference_embedding in references:
208
- distance = cosine(embedding, reference_embedding)
209
- if distance < min_distance:
210
- min_distance = distance
211
- closest_speaker = name
212
 
213
- return closest_speaker
214
-
215
-
216
- def format_speaker_output_by_segment2(embeddings: np.ndarray, transcript: dict,
217
- reference_embeddings: List[Tuple[str, np.ndarray]]) -> str:
218
- """
219
- 各発話者の埋め込みに基づいて、セグメントを整形して出力します。
220
- Parameters
221
- ----------
222
- embeddings: np.ndarray
223
- 話者の埋め込みのリスト
224
- transcript: dict
225
- Whisper API の transcribe メソッドの出力結果
226
- reference_embeddings: List[Tuple[str, np.ndarray]]
227
- 参照話者の名前と埋め込みのリスト
228
- Returns
229
- -------
230
- str
231
- 発話者ごとに整形されたセグメントの文字列。
232
  """
233
- labeled_segments = []
234
- for embedding, segment in zip(embeddings, transcript["segments"]):
235
- speaker_name = closest_reference_speaker(embedding, reference_embeddings)
236
- labeled_segments.append((speaker_name, segment["start"], segment["text"]))
237
-
238
- output = ""
239
- for speaker, _, text in labeled_segments:
240
- output += f"{speaker}: 「{text}」\n"
241
- return output
242
-
243
-
244
- import gradio as gr
245
- import openai
246
-
247
-
248
- def create_transcription_with_speaker(openai_key, main_audio, reference_audio_1, reference1_name,
249
- reference_audio_2, reference2_name, speaker_count=2):
250
- openai.api_key = openai_key
251
- # 文字起こし
252
- transcript = openai.Audio.transcribe("whisper-1", open(main_audio, "rb"), response_format="verbose_json")
253
- # 各発話をembeddingsに変換
254
- embeddings = generate_speaker_embeddings(main_audio, transcript)
255
- # 各発話のembeddingsをクラスタリング
256
- clustering = clustering_embeddings(speaker_count, embeddings)
257
- # クラスタリングで作られた仮のラベルで各セグメントに名前付け
258
- output_by_segment1 = format_speaker_output_by_segment(clustering, transcript)
259
- reference1 = reference_audio_embedding(reference_audio_1)
260
- reference2 = reference_audio_embedding(reference_audio_2)
261
- reference_embeddings = [(reference1_name, reference1), (reference2_name, reference2)]
262
- output_by_segment2 = format_speaker_output_by_segment2(embeddings, transcript, reference_embeddings)
263
- return output_by_segment1, output_by_segment2
264
-
265
-
266
- inputs = [
267
- gr.Textbox(lines=1, label="openai_key", type="password"),
268
- gr.Audio(type="filepath", label="メイン音声ファイル"),
269
- gr.Audio(type="filepath", label="話者 (1) 参考音声ファイル"),
270
- gr.Textbox(lines=1, label="話者 (1) の名前"),
271
- gr.Audio(type="filepath", label="話者 (2) 参考音声ファイル"),
272
- gr.Textbox(lines=1, label="話者 (2) の名前")
273
- ]
274
-
275
- outputs = [
276
- gr.Textbox(label="話者クラスタリング文字起こし"),
277
- gr.Textbox(label="話者アサイン文字起こし"),
278
- ]
279
-
280
- app = gr.Interface(
281
- fn=create_transcription_with_speaker,
282
- inputs=inputs,
283
- outputs=outputs,
284
- title="話者アサイン機能付き書き起こしアプリ",
285
- description="音声ファイルをアップロードすると、話者分離した文字起こしが作成されます。"
286
- )
287
 
288
- app.launch(debug=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # import whisper
2
+ from faster_whisper import WhisperModel
3
+ import datetime
4
+ import subprocess
5
+ import gradio as gr
6
+ from pathlib import Path
7
+ import pandas as pd
8
+ import re
9
+ import time
10
  import os
 
11
  import numpy as np
12
+ from sklearn.cluster import AgglomerativeClustering
13
+ from sklearn.metrics import silhouette_score
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
 
15
+ from pytube import YouTube
16
+ import yt_dlp
17
+ import torch
18
+ import pyannote.audio
19
+ from pyannote.audio.pipelines.speaker_verification import PretrainedSpeakerEmbedding
20
+ from pyannote.audio import Audio
21
+ from pyannote.core import Segment
22
 
23
+ from gpuinfo import GPUInfo
 
 
 
24
 
25
+ import wave
26
+ import contextlib
27
+ from transformers import pipeline
28
+ import psutil
29
+
30
+ whisper_models = ["tiny", "base", "small", "medium", "large-v1", "large-v2"]
31
+ source_languages = {
32
+ "en": "English",
33
+ "ja": "Japanese",
34
+ }
35
+
36
+ source_language_list = [key[0] for key in source_languages.items()]
37
+
38
+ MODEL_NAME = "vumichien/whisper-medium-jp"
39
+ lang = "ja"
40
+
41
+ device = 0 if torch.cuda.is_available() else "cpu"
42
+ pipe = pipeline(
43
+ task="automatic-speech-recognition",
44
+ model=MODEL_NAME,
45
+ chunk_length_s=30,
46
+ device=device,
47
+ )
48
+ os.makedirs('output', exist_ok=True)
49
+ pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe")
50
 
51
+ embedding_model = PretrainedSpeakerEmbedding(
52
+ "speechbrain/spkrec-ecapa-voxceleb",
53
+ device=torch.device("cuda" if torch.cuda.is_available() else "cpu"))
54
 
55
 
56
+ def transcribe(microphone, file_upload):
57
+ warn_output = ""
58
+ if (microphone is not None) and (file_upload is not None):
59
+ warn_output = (
60
+ "WARNING: You've uploaded an audio file and used the microphone. "
61
+ "The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
62
+ )
63
 
64
+ elif (microphone is None) and (file_upload is None):
65
+ return "ERROR: You have to either use the microphone or upload an audio file"
66
 
67
+ file = microphone if microphone is not None else file_upload
 
 
 
 
 
 
 
 
 
 
 
 
 
68
 
69
+ text = pipe(file)["text"]
70
 
71
+ return warn_output + text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72
 
 
 
 
 
73
 
74
+ def convert_time(secs):
75
+ return datetime.timedelta(seconds=round(secs))
76
 
 
 
77
 
78
+ def get_youtube(video_url):
79
+ # yt = YouTube(video_url)
80
+ # abs_video_path = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first().download()
81
 
82
+ ydl_opts = {
83
+ 'format': 'bestvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best',
84
+ }
 
 
 
 
 
 
 
 
 
 
 
 
 
85
 
86
+ with yt_dlp.YoutubeDL(ydl_opts) as ydl:
87
+ info = ydl.extract_info(video_url, download=False)
88
+ abs_video_path = ydl.prepare_filename(info)
89
+ ydl.process_info(info)
90
 
91
+ print("Success download video")
92
+ print(abs_video_path)
93
+ return abs_video_path
94
 
95
 
96
+ def speech_to_text(video_file_path, selected_source_lang, whisper_model, num_speakers):
 
 
 
 
 
 
 
 
 
 
 
 
97
  """
98
+ # Transcribe youtube link using OpenAI Whisper
99
+ 1. Using Open AI's Whisper model to seperate audio into segments and generate transcripts.
100
+ 2. Generating speaker embeddings for each segments.
101
+ 3. Applying agglomerative clustering on the embeddings to identify the speaker for each segment.
 
 
 
102
 
103
+ Speech Recognition is based on models from OpenAI Whisper https://github.com/openai/whisper
104
+ Speaker diarization model and pipeline from by https://github.com/pyannote/pyannote-audio
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
105
  """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
106
 
107
+ # model = whisper.load_model(whisper_model)
108
+ # model = WhisperModel(whisper_model, device="cuda", compute_type="int8_float16")
109
+ model = WhisperModel(whisper_model, compute_type="int8")
110
+ time_start = time.time()
111
+ if (video_file_path == None):
112
+ raise ValueError("Error no video input")
113
+ print(video_file_path)
114
+
115
+ try:
116
+ # Read and convert youtube video
117
+ _, file_ending = os.path.splitext(f'{video_file_path}')
118
+ print(f'file enging is {file_ending}')
119
+ audio_file = video_file_path.replace(file_ending, ".wav")
120
+ print("starting conversion to wav")
121
+ os.system(f'ffmpeg -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{audio_file}"')
122
+
123
+ # Get duration
124
+ with contextlib.closing(wave.open(audio_file, 'r')) as f:
125
+ frames = f.getnframes()
126
+ rate = f.getframerate()
127
+ duration = frames / float(rate)
128
+ print(f"conversion to wav ready, duration of audio file: {duration}")
129
+
130
+ # Transcribe audio
131
+ options = dict(language=selected_source_lang, beam_size=5, best_of=5)
132
+ transcribe_options = dict(task="transcribe", **options)
133
+ segments_raw, info = model.transcribe(audio_file, **transcribe_options)
134
+
135
+ # Convert back to original openai format
136
+ segments = []
137
+ i = 0
138
+ for segment_chunk in segments_raw:
139
+ chunk = {}
140
+ chunk["start"] = segment_chunk.start
141
+ chunk["end"] = segment_chunk.end
142
+ chunk["text"] = segment_chunk.text
143
+ segments.append(chunk)
144
+ i += 1
145
+ print("transcribe audio done with fast whisper")
146
+ except Exception as e:
147
+ raise RuntimeError("Error converting video to audio")
148
+
149
+ try:
150
+ # Create embedding
151
+ def segment_embedding(segment):
152
+ audio = Audio()
153
+ start = segment["start"]
154
+ # Whisper overshoots the end timestamp in the last segment
155
+ end = min(duration, segment["end"])
156
+ clip = Segment(start, end)
157
+ waveform, sample_rate = audio.crop(audio_file, clip)
158
+ return embedding_model(waveform[None])
159
+
160
+ embeddings = np.zeros(shape=(len(segments), 192))
161
+ for i, segment in enumerate(segments):
162
+ embeddings[i] = segment_embedding(segment)
163
+ embeddings = np.nan_to_num(embeddings)
164
+ print(f'Embedding shape: {embeddings.shape}')
165
+
166
+ if num_speakers == 0:
167
+ # Find the best number of speakers
168
+ score_num_speakers = {}
169
+
170
+ for num_speakers in range(2, 10 + 1):
171
+ clustering = AgglomerativeClustering(num_speakers).fit(embeddings)
172
+ score = silhouette_score(embeddings, clustering.labels_, metric='euclidean')
173
+ score_num_speakers[num_speakers] = score
174
+ best_num_speaker = max(score_num_speakers, key=lambda x: score_num_speakers[x])
175
+ print(f"The best number of speakers: {best_num_speaker} with {score_num_speakers[best_num_speaker]} score")
176
+ else:
177
+ best_num_speaker = num_speakers
178
+
179
+ # Assign speaker label
180
+ clustering = AgglomerativeClustering(best_num_speaker).fit(embeddings)
181
+ labels = clustering.labels_
182
+ for i in range(len(segments)):
183
+ segments[i]["speaker"] = 'SPEAKER ' + str(labels[i] + 1)
184
+
185
+ # Make output
186
+ objects = {
187
+ 'Start': [],
188
+ 'End': [],
189
+ 'Speaker': [],
190
+ 'Text': []
191
+ }
192
+ text = ''
193
+ for (i, segment) in enumerate(segments):
194
+ if i == 0 or segments[i - 1]["speaker"] != segment["speaker"]:
195
+ objects['Start'].append(str(convert_time(segment["start"])))
196
+ objects['Speaker'].append(segment["speaker"])
197
+ if i != 0:
198
+ objects['End'].append(str(convert_time(segments[i - 1]["end"])))
199
+ objects['Text'].append(text)
200
+ text = ''
201
+ text += segment["text"] + ' '
202
+ objects['End'].append(str(convert_time(segments[i - 1]["end"])))
203
+ objects['Text'].append(text)
204
+
205
+ time_end = time.time()
206
+ time_diff = time_end - time_start
207
+ memory = psutil.virtual_memory()
208
+ gpu_utilization, gpu_memory = GPUInfo.gpu_usage()
209
+ gpu_utilization = gpu_utilization[0] if len(gpu_utilization) > 0 else 0
210
+ gpu_memory = gpu_memory[0] if len(gpu_memory) > 0 else 0
211
+ system_info = f"""
212
+ *Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB.*
213
+ *Processing time: {time_diff:.5} seconds.*
214
+ *GPU Utilization: {gpu_utilization}%, GPU Memory: {gpu_memory}MiB.*
215
+ """
216
+ save_path = "output/transcript_result.csv"
217
+ df_results = pd.DataFrame(objects)
218
+ df_results.to_csv(save_path)
219
+ return df_results, system_info, save_path
220
+
221
+ except Exception as e:
222
+ raise RuntimeError("Error Running inference with local model", e)
223
+
224
+
225
+ # ---- Gradio Layout -----
226
+ # Inspiration from https://huggingface.co/spaces/RASMUS/Whisper-youtube-crosslingual-subtitles
227
+ video_in = gr.Video(label="Video file", mirror_webcam=False)
228
+ youtube_url_in = gr.Textbox(label="Youtube url", lines=1, interactive=True)
229
+ df_init = pd.DataFrame(columns=['Start', 'End', 'Speaker', 'Text'])
230
+ memory = psutil.virtual_memory()
231
+ selected_source_lang = gr.Dropdown(choices=source_language_list, type="value", value="ja",
232
+ label="Spoken language in video", interactive=True)
233
+ selected_whisper_model = gr.Dropdown(choices=whisper_models, type="value", value="base", label="Selected Whisper model",
234
+ interactive=True)
235
+ number_speakers = gr.Number(precision=0, value=0,
236
+ label="Input number of speakers for better results. If value=0, model will automatic find the best number of speakers",
237
+ interactive=True)
238
+ system_info = gr.Markdown(
239
+ f"*Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB*")
240
+ download_transcript = gr.File(label="Download transcript")
241
+ transcription_df = gr.DataFrame(value=df_init, label="Transcription dataframe", row_count=(0, "dynamic"), max_rows=10,
242
+ wrap=True, overflow_row_behaviour='paginate')
243
+ title = "Whisper speaker diarization"
244
+ demo = gr.Blocks(title=title)
245
+ demo.encrypt = False
246
+
247
+ with demo:
248
+ with gr.Row():
249
+ gr.Markdown('''
250
+ ### You can test by following examples:
251
+ ''')
252
+ examples = gr.Examples(examples=
253
+ ["https://www.youtube.com/watch?v=j7BfEzAFuYc&t=32s",
254
+ "https://www.youtube.com/watch?v=-UX0X45sYe4",
255
+ "https://www.youtube.com/watch?v=7minSgqi-Gw"],
256
+ label="Examples", inputs=[youtube_url_in])
257
+
258
+ with gr.Row():
259
+ with gr.Column():
260
+ youtube_url_in.render()
261
+ download_youtube_btn = gr.Button("Download Youtube video")
262
+ download_youtube_btn.click(get_youtube, [youtube_url_in], [video_in])
263
+ print(video_in)
264
+
265
+ with gr.Row():
266
+ with gr.Column():
267
+ video_in.render()
268
+ with gr.Column():
269
+ gr.Markdown('''
270
+ ##### Here you can start the transcription process.
271
+ ##### Please select the source language for transcription.
272
+ ##### You can select a range of assumed numbers of speakers.
273
+ ''')
274
+ selected_source_lang.render()
275
+ selected_whisper_model.render()
276
+ number_speakers.render()
277
+ transcribe_btn = gr.Button("Transcribe audio and diarization")
278
+ transcribe_btn.click(speech_to_text,
279
+ [video_in, selected_source_lang, selected_whisper_model, number_speakers],
280
+ [transcription_df, system_info, download_transcript]
281
+ )
282
+
283
+ with gr.Row():
284
+ gr.Markdown('''
285
+ ##### Here you will get transcription output
286
+ ##### ''')
287
+
288
+ with gr.Row():
289
+ with gr.Column():
290
+ download_transcript.render()
291
+ transcription_df.render()
292
+ # system_info.render()
293
+
294
+
295
+ demo.launch(debug=True)