FontDiffuser-Gradio / src /modules /content_encoder.py
yeungchenwa's picture
[Update] Add files and checkpoint
508b842
raw
history blame
15.7 kB
import functools
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import init
from torch.nn import Parameter as P
from diffusers import ModelMixin
from diffusers.configuration_utils import (ConfigMixin,
register_to_config)
def proj(x, y):
return torch.mm(y, x.t()) * y / torch.mm(y, y.t())
def gram_schmidt(x, ys):
for y in ys:
x = x - proj(x, y)
return x
def power_iteration(W, u_, update=True, eps=1e-12):
us, vs, svs = [], [], []
for i, u in enumerate(u_):
with torch.no_grad():
v = torch.matmul(u, W)
v = F.normalize(gram_schmidt(v, vs), eps=eps)
vs += [v]
u = torch.matmul(v, W.t())
u = F.normalize(gram_schmidt(u, us), eps=eps)
us += [u]
if update:
u_[i][:] = u
svs += [torch.squeeze(torch.matmul(torch.matmul(v, W.t()), u.t()))]
return svs, us, vs
class LinearBlock(nn.Module):
def __init__(
self,
in_dim,
out_dim,
norm='none',
act='relu',
use_sn=False
):
super(LinearBlock, self).__init__()
use_bias = True
self.fc = nn.Linear(in_dim, out_dim, bias=use_bias)
if use_sn:
self.fc = nn.utils.spectral_norm(self.fc)
# initialize normalization
norm_dim = out_dim
if norm == 'bn':
self.norm = nn.BatchNorm1d(norm_dim)
elif norm == 'in':
self.norm = nn.InstanceNorm1d(norm_dim)
elif norm == 'none':
self.norm = None
else:
assert 0, "Unsupported normalization: {}".format(norm)
# initialize activation
if act == 'relu':
self.activation = nn.ReLU(inplace=True)
elif act == 'lrelu':
self.activation = nn.LeakyReLU(0.2, inplace=True)
elif act == 'tanh':
self.activation = nn.Tanh()
elif act == 'none':
self.activation = None
else:
assert 0, "Unsupported activation: {}".format(act)
def forward(self, x):
out = self.fc(x)
if self.norm:
out = self.norm(out)
if self.activation:
out = self.activation(out)
return out
class MLP(nn.Module):
def __init__(
self,
nf_in,
nf_out,
nf_mlp,
num_blocks,
norm,
act,
use_sn =False
):
super(MLP,self).__init__()
self.model = nn.ModuleList()
nf = nf_mlp
self.model.append(LinearBlock(nf_in, nf, norm = norm, act = act, use_sn = use_sn))
for _ in range((num_blocks - 2)):
self.model.append(LinearBlock(nf, nf, norm=norm, act=act, use_sn=use_sn))
self.model.append(LinearBlock(nf, nf_out, norm='none', act ='none', use_sn = use_sn))
self.model = nn.Sequential(*self.model)
def forward(self, x):
return self.model(x.view(x.size(0), -1))
class SN(object):
def __init__(
self,
num_svs,
num_itrs,
num_outputs,
transpose=False,
eps=1e-12
):
self.num_itrs = num_itrs
self.num_svs = num_svs
self.transpose = transpose
self.eps = eps
for i in range(self.num_svs):
self.register_buffer('u%d' % i, torch.randn(1, num_outputs))
self.register_buffer('sv%d' % i, torch.ones(1))
@property
def u(self):
return [getattr(self, 'u%d' % i) for i in range(self.num_svs)]
@property
def sv(self):
return [getattr(self, 'sv%d' % i) for i in range(self.num_svs)]
def W_(self):
W_mat = self.weight.view(self.weight.size(0), -1)
if self.transpose:
W_mat = W_mat.t()
for _ in range(self.num_itrs):
svs, us, vs = power_iteration(W_mat, self.u, update=self.training, eps=self.eps)
if self.training:
with torch.no_grad():
for i, sv in enumerate(svs):
self.sv[i][:] = sv
return self.weight / svs[0]
class SNConv2d(nn.Conv2d, SN):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, groups=1, bias=True,
num_svs=1, num_itrs=1, eps=1e-12):
nn.Conv2d.__init__(self, in_channels, out_channels, kernel_size, stride,
padding, dilation, groups, bias)
SN.__init__(self, num_svs, num_itrs, out_channels, eps=eps)
def forward(self, x):
return F.conv2d(x, self.W_(), self.bias, self.stride,
self.padding, self.dilation, self.groups)
def forward_wo_sn(self, x):
return F.conv2d(x, self.weight, self.bias, self.stride,
self.padding, self.dilation, self.groups)
class SNLinear(nn.Linear, SN):
def __init__(self, in_features, out_features, bias=True,
num_svs=1, num_itrs=1, eps=1e-12):
nn.Linear.__init__(self, in_features, out_features, bias)
SN.__init__(self, num_svs, num_itrs, out_features, eps=eps)
def forward(self, x):
return F.linear(x, self.W_(), self.bias)
class Attention(nn.Module):
def __init__(
self,
ch,
which_conv=SNConv2d,
name='attention'
):
super(Attention, self).__init__()
self.ch = ch
self.which_conv = which_conv
self.theta = self.which_conv(self.ch, self.ch // 8, kernel_size=1, padding=0, bias=False)
self.phi = self.which_conv(self.ch, self.ch // 8, kernel_size=1, padding=0, bias=False)
self.g = self.which_conv(self.ch, self.ch // 2, kernel_size=1, padding=0, bias=False)
self.o = self.which_conv(self.ch // 2, self.ch, kernel_size=1, padding=0, bias=False)
# Learnable gain parameter
self.gamma = P(torch.tensor(0.), requires_grad=True)
def forward(self, x, y=None):
theta = self.theta(x)
phi = F.max_pool2d(self.phi(x), [2,2])
g = F.max_pool2d(self.g(x), [2,2])
theta = theta.view(-1, self. ch // 8, x.shape[2] * x.shape[3])
phi = phi.view(-1, self. ch // 8, x.shape[2] * x.shape[3] // 4)
g = g.view(-1, self. ch // 2, x.shape[2] * x.shape[3] // 4)
beta = F.softmax(torch.bmm(theta.transpose(1, 2), phi), -1)
o = self.o(torch.bmm(g, beta.transpose(1,2)).view(-1, self.ch // 2, x.shape[2], x.shape[3]))
return self.gamma * o + x
class DBlock(nn.Module):
def __init__(self, in_channels, out_channels, which_conv=SNConv2d, wide=True,
preactivation=False, activation=None, downsample=None,):
super(DBlock, self).__init__()
self.in_channels, self.out_channels = in_channels, out_channels
self.hidden_channels = self.out_channels if wide else self.in_channels
self.which_conv = which_conv
self.preactivation = preactivation
self.activation = activation
self.downsample = downsample
# Conv layers
self.conv1 = self.which_conv(self.in_channels, self.hidden_channels)
self.conv2 = self.which_conv(self.hidden_channels, self.out_channels)
self.learnable_sc = True if (in_channels != out_channels) or downsample else False
if self.learnable_sc:
self.conv_sc = self.which_conv(in_channels, out_channels,
kernel_size=1, padding=0)
def shortcut(self, x):
if self.preactivation:
if self.learnable_sc:
x = self.conv_sc(x)
if self.downsample:
x = self.downsample(x)
else:
if self.downsample:
x = self.downsample(x)
if self.learnable_sc:
x = self.conv_sc(x)
return x
def forward(self, x):
if self.preactivation:
h = F.relu(x)
else:
h = x
h = self.conv1(h)
h = self.conv2(self.activation(h))
if self.downsample:
h = self.downsample(h)
return h + self.shortcut(x)
class GBlock(nn.Module):
def __init__(self, in_channels, out_channels,
which_conv=nn.Conv2d,which_bn= nn.BatchNorm2d, activation=None,
upsample=None):
super(GBlock, self).__init__()
self.in_channels, self.out_channels = in_channels, out_channels
self.which_conv,self.which_bn =which_conv, which_bn
self.activation = activation
self.upsample = upsample
# Conv layers
self.conv1 = self.which_conv(self.in_channels, self.out_channels)
self.conv2 = self.which_conv(self.out_channels, self.out_channels)
self.learnable_sc = in_channels != out_channels or upsample
if self.learnable_sc:
self.conv_sc = self.which_conv(in_channels, out_channels,
kernel_size=1, padding=0)
# Batchnorm layers
self.bn1 = self.which_bn(in_channels)
self.bn2 = self.which_bn(out_channels)
# upsample layers
self.upsample = upsample
def forward(self, x):
h = self.activation(self.bn1(x))
if self.upsample:
h = self.upsample(h)
x = self.upsample(x)
h = self.conv1(h)
h = self.activation(self.bn2(h))
h = self.conv2(h)
if self.learnable_sc:
x = self.conv_sc(x)
return h + x
class GBlock2(nn.Module):
def __init__(self, in_channels, out_channels,
which_conv=nn.Conv2d, activation=None,
upsample=None, skip_connection = True):
super(GBlock2, self).__init__()
self.in_channels, self.out_channels = in_channels, out_channels
self.which_conv = which_conv
self.activation = activation
self.upsample = upsample
# Conv layers
self.conv1 = self.which_conv(self.in_channels, self.out_channels)
self.conv2 = self.which_conv(self.out_channels, self.out_channels)
self.learnable_sc = in_channels != out_channels or upsample
if self.learnable_sc:
self.conv_sc = self.which_conv(in_channels, out_channels,
kernel_size=1, padding=0)
# upsample layers
self.upsample = upsample
self.skip_connection = skip_connection
def forward(self, x):
h = self.activation(x)
if self.upsample:
h = self.upsample(h)
x = self.upsample(x)
h = self.conv1(h)
h = self.activation(h)
h = self.conv2(h)
if self.learnable_sc:
x = self.conv_sc(x)
if self.skip_connection:
out = h + x
else:
out = h
return out
def content_encoder_arch(ch =64,out_channel_multiplier = 1, input_nc = 3):
arch = {}
n=2
arch[80] = {'in_channels': [input_nc] + [ch*item for item in [1,2]],
'out_channels' : [item * ch for item in [1,2,4]],
'resolution': [40,20,10]}
arch[96] = {'in_channels': [input_nc] + [ch*item for item in [1,2]],
'out_channels' : [item * ch for item in [1,2,4]],
'resolution': [48,24,12]}
arch[128] = {'in_channels': [input_nc] + [ch*item for item in [1,2,4,8]],
'out_channels' : [item * ch for item in [1,2,4,8,16]],
'resolution': [64,32,16,8,4]}
arch[256] = {'in_channels':[input_nc]+[ch*item for item in [1,2,4,8,8]],
'out_channels':[item*ch for item in [1,2,4,8,8,16]],
'resolution': [128,64,32,16,8,4]}
return arch
class ContentEncoder(ModelMixin, ConfigMixin):
@register_to_config
def __init__(self, G_ch=64, G_wide=True, resolution=128,
G_kernel_size=3, G_attn='64_32_16_8', n_classes=1000,
num_G_SVs=1, num_G_SV_itrs=1, G_activation=nn.ReLU(inplace=False),
SN_eps=1e-12, output_dim=1, G_fp16=False,
G_init='N02', G_param='SN', nf_mlp = 512, nEmbedding = 256, input_nc = 3,output_nc = 3):
super(ContentEncoder, self).__init__()
self.ch = G_ch
self.G_wide = G_wide
self.resolution = resolution
self.kernel_size = G_kernel_size
self.attention = G_attn
self.n_classes = n_classes
self.activation = G_activation
self.init = G_init
self.G_param = G_param
self.SN_eps = SN_eps
self.fp16 = G_fp16
if self.resolution == 96:
self.save_featrues = [0,1,2,3,4]
elif self.resolution == 80:
self.save_featrues = [0,1,2,3,4]
elif self.resolution == 128:
self.save_featrues = [0,1,2,3,4]
elif self.resolution == 256:
self.save_featrues = [0,1,2,3,4,5]
self.out_channel_nultipiler = 1
self.arch = content_encoder_arch(self.ch, self.out_channel_nultipiler,input_nc)[resolution]
if self.G_param == 'SN':
self.which_conv = functools.partial(SNConv2d,
kernel_size=3, padding=1,
num_svs=num_G_SVs, num_itrs=num_G_SV_itrs,
eps=self.SN_eps)
self.which_linear = functools.partial(SNLinear,
num_svs=num_G_SVs, num_itrs=num_G_SV_itrs,
eps=self.SN_eps)
self.blocks = []
for index in range(len(self.arch['out_channels'])):
self.blocks += [[DBlock(in_channels=self.arch['in_channels'][index],
out_channels=self.arch['out_channels'][index],
which_conv=self.which_conv,
wide=self.G_wide,
activation=self.activation,
preactivation=(index > 0),
downsample=nn.AvgPool2d(2))]]
self.blocks = nn.ModuleList([nn.ModuleList(block) for block in self.blocks])
self.init_weights()
def init_weights(self):
self.param_count = 0
for module in self.modules():
if (isinstance(module, nn.Conv2d)
or isinstance(module, nn.Linear)
or isinstance(module, nn.Embedding)):
if self.init == 'ortho':
init.orthogonal_(module.weight)
elif self.init == 'N02':
init.normal_(module.weight, 0, 0.02)
elif self.init in ['glorot', 'xavier']:
init.xavier_uniform_(module.weight)
else:
print('Init style not recognized...')
self.param_count += sum([p.data.nelement() for p in module.parameters()])
print('Param count for D''s initialized parameters: %d' % self.param_count)
def forward(self,x):
h = x
residual_features = []
residual_features.append(h)
for index, blocklist in enumerate(self.blocks):
for block in blocklist:
h = block(h)
if index in self.save_featrues[:-1]:
residual_features.append(h)
return h,residual_features