Spaces:
Runtime error
Runtime error
""" | |
Copyright (c) 2023, salesforce.com, inc. | |
All rights reserved. | |
SPDX-License-Identifier: BSD-3-Clause | |
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause | |
""" | |
import logging | |
import torch | |
import torch.nn as nn | |
from torch.cuda.amp import autocast as autocast | |
from torch.nn import functional as F | |
from torch.nn import CrossEntropyLoss | |
from peft import get_peft_config, get_peft_model, get_peft_model_state_dict, LoraConfig, TaskType, PeftModel | |
from ogb.utils import smiles2graph | |
from torch_geometric.loader.dataloader import Collater | |
from torch_geometric.data import Data | |
import numpy as np | |
from lavis.models.blip2_models.blip2 import ( | |
# Blip2Base, | |
disabled_train, | |
) | |
from model.blip2 import Blip2Base | |
from model.help_funcs import get_not_allowed_tokens_ids | |
from transformers import AutoTokenizer | |
from transformers import OPTForCausalLM, OPTConfig | |
# from opendelta import LoraModel | |
# from opendelta.delta_models.lora import LoraConfig | |
# from opendelta.delta_configs | |
opt_model_list = [ | |
"facebook/galactica-125m", | |
"facebook/galactica-1.3b", | |
"facebook/galactica-6.7b", | |
"facebook/galactica-30b", | |
] | |
def mask_by_len(input, lens, fill_value=0): | |
''' | |
input: shape = [N, D] | |
lens: shape = [N] | |
''' | |
mask = torch.arange(input.shape[1], device=input.device).reshape(1, -1) | |
mask = mask < lens.reshape(-1, 1) | |
input[mask] = fill_value | |
return input | |
def smiles2data(smiles): | |
graph = smiles2graph(smiles) | |
x = torch.from_numpy(graph['node_feat']) | |
edge_index = torch.from_numpy(graph['edge_index'], ) | |
edge_attr = torch.from_numpy(graph['edge_feat']) | |
data = Data(x=x, edge_index=edge_index, edge_attr=edge_attr) | |
return data | |
import re | |
SPLIT_MARKER = f"SPL{1}T-TH{1}S-Pl3A5E" | |
CUSTOM_SEQ_RE = re.compile(r"(\[START_(DNA|SMILES|I_SMILES|AMINO)])(.*?)(\[END_\2])") | |
def _insert_split_marker(m: re.Match): | |
""" | |
Applies split marker based on a regex match of special tokens such as | |
[START_DNA]. | |
Parameters | |
---------- | |
n : str | |
Input text to split | |
Returns | |
---------- | |
str - the text with the split token added | |
""" | |
start_token, _, sequence, end_token = m.groups() | |
sequence = re.sub(r"(.)", fr"{SPLIT_MARKER}\1", sequence, flags=re.DOTALL) | |
return f"{start_token}{sequence}{SPLIT_MARKER}{end_token}" | |
def escape_custom_split_sequence(text): | |
""" | |
Applies custom splitting to the text for GALILEO's tokenization | |
Parameters | |
---------- | |
text : str | |
Input text to split | |
Returns | |
---------- | |
str - the text with the split token added | |
""" | |
return CUSTOM_SEQ_RE.sub(_insert_split_marker, text) | |
def smiles_handler(text, mol_ph): | |
smiles_list = [] | |
for match in CUSTOM_SEQ_RE.finditer(text): | |
smiles = match.group(3) | |
smiles_list.append(smiles) | |
text = CUSTOM_SEQ_RE.sub(r'\1\3\4%s' % (mol_ph), text) | |
text = escape_custom_split_sequence(text) | |
return text, smiles_list | |
class Blip2OPT(Blip2Base): | |
""" | |
BLIP2 first-stage model with Q-former and ViT. | |
Supported model types: | |
- pretrained: pretrained model with vit-g | |
- pretrain_vitL: pretrained model with vit-large | |
- coco: fintuned model on coco | |
Usage: | |
>>> from lavis.models import load_model | |
>>> model = load_model("blip2", "pretrain") | |
""" | |
def __init__( | |
self, | |
bert_name, | |
gin_num_layers, | |
gin_hidden_dim, | |
gin_drop_ratio, | |
tune_gnn=False, | |
tune_qformer=False, | |
num_query_token=32, | |
cross_attention_freq=2, | |
llm_tune='freeze', | |
peft_dir='', | |
opt_model="facebook/galactica-1.3b", | |
prompt="", | |
args=None, | |
): | |
super().__init__() | |
self.args = args | |
self.graph_encoder, self.ln_graph = self.init_graph_encoder(gin_num_layers, gin_hidden_dim, gin_drop_ratio) | |
self.tune_gnn = tune_gnn | |
self.tune_qformer = tune_qformer | |
if not tune_gnn: | |
for name, param in self.graph_encoder.named_parameters(): | |
param.requires_grad = False | |
self.graph_encoder = self.graph_encoder.eval() | |
self.graph_encoder.train = disabled_train | |
logging.info("freeze graph encoder") | |
else: | |
logging.info("tune graph encoder") | |
self.num_query_token = num_query_token | |
self.Qformer, self.query_tokens = self.init_Qformer(bert_name, num_query_token, self.graph_encoder.num_features, cross_attention_freq) | |
if not tune_qformer: | |
for name, param in self.Qformer.named_parameters(): | |
param.requires_grad = False | |
self.Qformer = self.Qformer.eval() | |
self.Qformer.train = disabled_train | |
self.query_tokens.requires_grad = False | |
logging.info("freeze qformer encoder") | |
else: | |
logging.info("tune qformer encoder") | |
### remove the unused parameters | |
self.Qformer.cls = None | |
self.Qformer.bert.embeddings.word_embeddings = None | |
self.Qformer.bert.embeddings.position_embeddings = None | |
for layer in self.Qformer.bert.encoder.layer: | |
layer.output = None | |
layer.intermediate = None | |
opt_config_params = {k[len("optconfig_"):]: v for k, v in vars(args).items() if k.startswith("optconfig_")} | |
config = OPTConfig.from_pretrained(opt_model, **opt_config_params) | |
## initialize opt model | |
self.opt_tokenizer = AutoTokenizer.from_pretrained(opt_model, use_fast=False, padding_side='right') | |
self.opt_tokenizer.add_special_tokens({'pad_token': '<pad>'}) | |
self.opt_tokenizer.add_tokens('<mol>') # molecule placeholder | |
self.mol_token = '<mol>' | |
self.opt_tokenizer.mol_token_id = self.opt_tokenizer("<mol>", add_special_tokens=False).input_ids[0] | |
self.collater = Collater([], []) | |
if opt_model == 'facebook/galactica-125m': | |
self.opt_model = OPTForCausalLM.from_pretrained(opt_model, config=config) | |
else: | |
if torch.cuda.is_bf16_supported(): | |
self.opt_model = OPTForCausalLM.from_pretrained(opt_model, torch_dtype=torch.bfloat16, config=config) | |
else: | |
self.opt_model = OPTForCausalLM.from_pretrained(opt_model, torch_dtype=torch.float16, config=config) | |
self.opt_model.resize_token_embeddings(len(self.opt_tokenizer)) ## this will cause bug when full fine-tuning the opt model | |
self.llm_tune = llm_tune | |
if llm_tune == 'lora': | |
if peft_dir: | |
self.opt_model = PeftModel.from_pretrained(self.opt_model, peft_dir, is_trainable=True) | |
else: | |
if self.args.peft_config: | |
peft_config = LoraConfig(**LoraConfig.from_json_file(self.args.peft_config)) | |
else: | |
peft_config = LoraConfig(task_type=TaskType.CAUSAL_LM, inference_mode=False, r=args.lora_r, lora_alpha=args.lora_alpha, lora_dropout=args.lora_dropout) | |
self.peft_config = peft_config | |
self.opt_model = get_peft_model(self.opt_model, peft_config) | |
self.opt_model.print_trainable_parameters() | |
elif llm_tune == 'freeze': | |
for name, param in self.opt_model.named_parameters(): | |
param.requires_grad = False | |
elif llm_tune == 'full': | |
pass | |
else: | |
raise NotImplementedError() | |
## fixme: this is different from the original BLIP2 | |
if args.mode=='pretrain_eval': | |
self.eos_token_id = self.opt_tokenizer( | |
"[START_SMILES]\n", add_special_tokens=False | |
).input_ids | |
else: | |
self.eos_token_id = self.opt_tokenizer( | |
"\n", add_special_tokens=False | |
).input_ids[0] | |
self.opt_proj = nn.Linear( | |
self.Qformer.config.hidden_size, self.opt_model.config.hidden_size | |
) | |
## fixme: no prompt yet | |
self.prompt = prompt | |
self.rxn_batch_size = args.rxn_batch_size | |
self.generate_restrict_tokens = args.generate_restrict_tokens | |
self.train_restrict_tokens = args.train_restrict_tokens | |
if self.generate_restrict_tokens or self.train_restrict_tokens: | |
self.bad_words_ids = get_not_allowed_tokens_ids(opt_model) | |
# prompt_tokens = self.opt_tokenizer(self.prompt, return_tensors="pt") | |
# self.prompt_length = prompt_tokens.attention_mask.sum(1) | |
def opt_forward_v2( | |
self, | |
inputs_embeds, | |
attention_mask, | |
labels, | |
bad_word_ids=None, | |
): | |
output = self.opt_model( | |
inputs_embeds=inputs_embeds, | |
attention_mask=attention_mask, | |
return_dict=True, | |
labels=labels, | |
) | |
logits = output.logits | |
labels = labels.to(logits.device) | |
# Shift so that tokens < n predict n | |
if bad_word_ids: | |
bad_word_ids = torch.tensor(bad_word_ids, device=logits.device, dtype=torch.long) | |
bad_word_ids = bad_word_ids.squeeze() | |
logits[:, :, bad_word_ids] = -100 | |
shift_logits = logits[..., :-1, :].contiguous() | |
shift_labels = labels[..., 1:].contiguous() | |
shift_logits = shift_logits.view(-1, self.opt_model.config.vocab_size) | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(shift_logits, shift_labels.view(-1)) | |
return loss | |
def forward_action(self, batch, use_gragh=True): | |
# batch unpack | |
rxn_ids, graphs, text_tokens = batch | |
if use_gragh: | |
graph_embeds, graph_masks = self.graph_encoder(graphs) | |
if not self.tune_gnn: | |
graph_embeds = graph_embeds.detach() | |
# graph embedding calculation | |
graph_embeds = self.ln_graph(graph_embeds, graph_masks) | |
query_tokens = self.query_tokens.expand(graph_embeds.shape[0], -1, -1) | |
query_output = self.Qformer.bert( | |
query_embeds=query_tokens, | |
encoder_hidden_states=graph_embeds, | |
encoder_attention_mask=graph_masks, # fixme: check whether this mask is correct | |
return_dict=True, | |
) | |
mol_tokens = self.opt_proj(query_output.last_hidden_state) # graph_num x num_query_token x D | |
else: | |
del graphs | |
pad_mask = text_tokens.input_ids == self.opt_tokenizer.pad_token_id | |
targets = text_tokens.input_ids.masked_fill(pad_mask, -100) | |
targets = targets.masked_fill(text_tokens.is_mol_token, -100) | |
targets = targets.masked_fill(text_tokens.token_type_ids == 0, -100) | |
inputs_embeds = self.opt_model.get_input_embeddings()(text_tokens.input_ids) | |
if use_gragh: | |
inputs_embeds[text_tokens.is_mol_token] = mol_tokens.flatten(0, 1) # graph_num x emb_dim | |
if self.train_restrict_tokens: | |
loss = self.opt_forward_v2( | |
inputs_embeds=inputs_embeds, | |
attention_mask=text_tokens.attention_mask, | |
labels=targets, | |
bad_word_ids=self.bad_words_ids, | |
) | |
else: | |
outputs = self.opt_model( | |
inputs_embeds=inputs_embeds, | |
attention_mask=text_tokens.attention_mask, | |
return_dict=True, | |
labels=targets, | |
) | |
loss = outputs.loss | |
return {"loss": loss} | |
def forward_abstract(self, batch, use_gragh=True): | |
# batch unpack | |
graphs, text_tokens = batch | |
if use_gragh: | |
graph_embeds, graph_masks = self.graph_encoder(graphs) | |
if not self.tune_gnn: | |
graph_embeds = graph_embeds.detach() | |
# graph embedding calculation | |
graph_embeds = self.ln_graph(graph_embeds, graph_masks) | |
query_tokens = self.query_tokens.expand(graph_embeds.shape[0], -1, -1) | |
query_output = self.Qformer.bert( | |
query_embeds=query_tokens, | |
encoder_hidden_states=graph_embeds, | |
encoder_attention_mask=graph_masks, # fixme: check whether this mask is correct | |
return_dict=True, | |
) | |
mol_tokens = self.opt_proj(query_output.last_hidden_state) # graph_num x num_query_token x D | |
else: | |
del graphs | |
pad_mask = text_tokens.input_ids == self.opt_tokenizer.pad_token_id | |
targets = text_tokens.input_ids.masked_fill(pad_mask, -100) | |
targets = targets.masked_fill(text_tokens.is_mol_token, -100) | |
inputs_embeds = self.opt_model.get_input_embeddings()(text_tokens.input_ids) | |
if use_gragh: | |
inputs_embeds[text_tokens.is_mol_token] = mol_tokens.flatten(0, 1) # graph_num x emb_dim | |
outputs = self.opt_model( | |
inputs_embeds=inputs_embeds, | |
attention_mask=text_tokens.attention_mask, | |
return_dict=True, | |
labels=targets, | |
) | |
loss = outputs.loss | |
return {"loss": loss} | |
def generate( | |
self, | |
samples, | |
do_sample=False, | |
num_beams=5, | |
max_length=128, | |
min_length=1, | |
top_p=0.9, | |
repetition_penalty=1.0, | |
length_penalty=1.0, | |
num_captions=1, | |
temperature=1, | |
use_graph=True, | |
): | |
""" | |
Args: | |
samples (dict): A dictionary containing the following keys: | |
- image (torch.Tensor): A tensor of shape (batch_size, 3, H, W) | |
num_beams (int): Number of beams for beam search. 1 means no beam search. | |
max_length (int): The maximum length of the sequence to be generated. | |
min_length (int): The minimum length of the sequence to be generated. | |
top_p (float): The cumulative probability for nucleus sampling. | |
repetition_penalty (float): The parameter for repetition penalty. 1.0 means no penalty. | |
num_captions (int): Number of captions to be generated for each image. | |
Returns: | |
captions (list): A list of strings of length batch_size * num_captions. | |
""" | |
graphs = samples['graphs'] | |
prompt_tokens = samples['prompt_tokens'] | |
# prompt_lens = samples['prompt_lens'] | |
# with self.maybe_autocast(): | |
if use_graph: | |
graph_embeds, graph_masks = self.graph_encoder(graphs) | |
graph_embeds = self.ln_graph(graph_embeds) | |
query_tokens = self.query_tokens.expand(graph_embeds.shape[0], -1, -1) | |
query_output = self.Qformer.bert( | |
query_embeds=query_tokens, | |
encoder_hidden_states=graph_embeds, | |
encoder_attention_mask=graph_masks, | |
return_dict=True, | |
) | |
mol_tokens = self.opt_proj(query_output.last_hidden_state) | |
prompt_embeds = self.opt_model.get_input_embeddings()(prompt_tokens.input_ids) | |
if use_graph: | |
prompt_embeds[prompt_tokens.is_mol_token] = mol_tokens.flatten(0, 1).to(dtype=prompt_embeds.dtype) | |
extra_params = {} | |
if self.generate_restrict_tokens: | |
extra_params['bad_words_ids'] = self.bad_words_ids | |
outputs = self.opt_model.generate( | |
inputs_embeds=prompt_embeds, | |
attention_mask=prompt_tokens.attention_mask, | |
do_sample=do_sample, | |
top_p=top_p, | |
temperature=temperature, | |
num_beams=num_beams, | |
max_length=max_length, | |
min_length=min_length, | |
# pad_token_id=self.pad_token_id, | |
eos_token_id=self.eos_token_id, | |
repetition_penalty=repetition_penalty, | |
length_penalty=length_penalty, | |
num_return_sequences=num_captions, | |
# use_cache=False, | |
**extra_params | |
) | |
output_text = self.opt_tokenizer.batch_decode(outputs, skip_special_tokens=True) | |
output_text = [text.strip() for text in output_text] | |
return output_text | |