zhigangjiang's picture
no message
88b0dcb
raw
history blame
4.26 kB
"""
@Date: 2021/10/06
@description: Use the approach proposed by DuLa-Net
"""
import cv2
import numpy as np
import math
import matplotlib.pyplot as plt
from visualization.floorplan import draw_floorplan
def merge_near(lst, diag):
group = [[0, ]]
for i in range(1, len(lst)):
if lst[i] - np.mean(group[-1]) < diag * 0.02:
group[-1].append(lst[i])
else:
group.append([lst[i], ])
if len(group) == 1:
group = [lst[0], lst[-1]]
else:
group = [int(np.mean(x)) for x in group]
return group
def fit_layout_old(floor_xz, need_cube=False, show=False, block_eps=0.05):
show_radius = np.linalg.norm(floor_xz, axis=-1).max()
side_l = 512
floorplan = draw_floorplan(xz=floor_xz, show_radius=show_radius, show=show, scale=1, side_l=side_l).astype(np.uint8)
center = np.array([side_l / 2, side_l / 2])
polys = cv2.findContours(floorplan, 1, 2)
if isinstance(polys, tuple):
if len(polys) == 3:
# opencv 3
polys = list(polys[1])
else:
polys = list(polys[0])
polys.sort(key=lambda x: cv2.contourArea(x), reverse=True)
poly = polys[0]
sub_x, sub_y, w, h = cv2.boundingRect(poly)
floorplan_sub = floorplan[sub_y:sub_y + h, sub_x:sub_x + w]
sub_center = center - np.array([sub_x, sub_y])
polys = cv2.findContours(floorplan_sub, 1, 2)
if isinstance(polys, tuple):
if len(polys) == 3:
polys = polys[1]
else:
polys = polys[0]
poly = polys[0]
epsilon = 0.005 * cv2.arcLength(poly, True)
poly = cv2.approxPolyDP(poly, epsilon, True)
x_lst = [0, ]
y_lst = [0, ]
for i in range(len(poly)):
p1 = poly[i][0]
p2 = poly[(i + 1) % len(poly)][0]
if (p2[0] - p1[0]) == 0:
slope = 10
else:
slope = abs((p2[1] - p1[1]) / (p2[0] - p1[0]))
if slope <= 1:
s = int((p1[1] + p2[1]) / 2)
y_lst.append(s)
elif slope > 1:
s = int((p1[0] + p2[0]) / 2)
x_lst.append(s)
x_lst.append(floorplan_sub.shape[1])
y_lst.append(floorplan_sub.shape[0])
x_lst.sort()
y_lst.sort()
diag = math.sqrt(math.pow(floorplan_sub.shape[1], 2) + math.pow(floorplan_sub.shape[0], 2))
x_lst = merge_near(x_lst, diag)
y_lst = merge_near(y_lst, diag)
if need_cube and len(x_lst) > 2:
x_lst = [x_lst[0], x_lst[-1]]
if need_cube and len(y_lst) > 2:
y_lst = [y_lst[0], y_lst[-1]]
ans = np.zeros((floorplan_sub.shape[0], floorplan_sub.shape[1]))
for i in range(len(x_lst) - 1):
for j in range(len(y_lst) - 1):
sample = floorplan_sub[y_lst[j]:y_lst[j + 1], x_lst[i]:x_lst[i + 1]]
score = 0 if sample.size == 0 else sample.mean()
if score >= 0.3:
ans[y_lst[j]:y_lst[j + 1], x_lst[i]:x_lst[i + 1]] = 1
pred = np.uint8(ans)
pred_polys = cv2.findContours(pred, 1, 3)
if isinstance(pred_polys, tuple):
if len(pred_polys) == 3:
pred_polys = pred_polys[1]
else:
pred_polys = pred_polys[0]
polygon = [(p[0][1], p[0][0]) for p in pred_polys[0][::-1]]
v = np.array([p[0] + sub_y for p in polygon])
u = np.array([p[1] + sub_x for p in polygon])
# side_l
# v<-----------|o
# | | |
# | ----|----z | side_l
# | | |
# | x \|/
# |------------u
side_l = floorplan.shape[0]
pred_xz = np.concatenate((u[:, np.newaxis] - side_l // 2, side_l // 2 - v[:, np.newaxis]), axis=1)
pred_xz = pred_xz * show_radius / (side_l // 2)
if show:
draw_floorplan(pred_xz, show_radius=show_radius, show=show)
return pred_xz
if __name__ == '__main__':
from utils.conversion import uv2xyz
pano_img = np.zeros([512, 1024, 3])
corners = np.array([[0.1, 0.7],
[0.4, 0.7],
[0.3, 0.6],
[0.6, 0.6],
[0.8, 0.7]])
xz = uv2xyz(corners)[..., ::2]
draw_floorplan(xz, show=True, marker_color=None, center_color=0.8)
xz = fit_layout_old(xz)
draw_floorplan(xz, show=True, marker_color=None, center_color=0.8)