MotionInversion / train.py
ziyangmai's picture
page demo
113884e
import argparse
import logging
import math
import os
import gc
import copy
from omegaconf import OmegaConf
import torch
import torch.utils.checkpoint
import diffusers
import transformers
from tqdm.auto import tqdm
from accelerate import Accelerator
from accelerate.logging import get_logger
from models.unet.unet_3d_condition import UNet3DConditionModel
from diffusers.models import AutoencoderKL
from diffusers import DDIMScheduler, TextToVideoSDPipeline
from transformers import CLIPTextModel, CLIPTokenizer
from utils.ddim_utils import inverse_video
from utils.gpu_utils import handle_memory_attention, unet_and_text_g_c
from utils.func_utils import *
import imageio
import numpy as np
from dataset import *
from loss import *
from noise_init import *
from attn_ctrl import register_attention_control
import shutil
logger = get_logger(__name__, log_level="INFO")
def log_validation(accelerator, config, batch, global_step, text_prompt, unet, text_encoder, vae, output_dir):
with accelerator.autocast():
unet.eval()
text_encoder.eval()
unet_and_text_g_c(unet, text_encoder, False, False)
# handle spatial lora
if config.loss.type =='DebiasedHybrid':
loras = extract_lora_child_module(unet, target_replace_module=["Transformer2DModel"])
for lora_i in loras:
lora_i.scale = 0
pipeline = TextToVideoSDPipeline.from_pretrained(
config.model.pretrained_model_path,
text_encoder=text_encoder,
vae=vae,
unet=unet
)
prompt_list = text_prompt if len(config.val.prompt) <= 0 else config.val.prompt
for seed in config.val.seeds:
noisy_latent = batch['inversion_noise']
shape = noisy_latent.shape
noise = torch.randn(
shape,
device=noisy_latent.device,
generator=torch.Generator(noisy_latent.device).manual_seed(seed)
).to(noisy_latent.dtype)
# handle different noise initialization strategy
init_func_name = f'{config.noise_init.type}'
# Assuming config.dataset is a DictConfig object
init_params_dict = OmegaConf.to_container(config.noise_init, resolve=True)
# Remove the 'type' key
init_params_dict.pop('type', None) # 'None' ensures no error if 'type' key doesn't exist
init_func_to_call = globals().get(init_func_name)
init_noise = init_func_to_call(noisy_latent, noise, **init_params_dict)
for prompt in prompt_list:
file_name = f"{prompt.replace(' ', '_')}_seed_{seed}.mp4"
file_path = f"{output_dir}/samples_{global_step}/"
if not os.path.exists(file_path):
os.makedirs(file_path)
with torch.no_grad():
video_frames = pipeline(
prompt=prompt,
negative_prompt=config.val.negative_prompt,
width=config.val.width,
height=config.val.height,
num_frames=config.val.num_frames,
num_inference_steps=config.val.num_inference_steps,
guidance_scale=config.val.guidance_scale,
latents=init_noise,
).frames[0]
export_to_video(video_frames, os.path.join(file_path, file_name), config.dataset.fps)
logger.info(f"Saved a new sample to {os.path.join(file_path, file_name)}")
del pipeline
torch.cuda.empty_cache()
def create_logging(logging, logger, accelerator):
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
def accelerate_set_verbose(accelerator):
if accelerator.is_local_main_process:
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
def export_to_video(video_frames, output_video_path, fps):
video_writer = imageio.get_writer(output_video_path, fps=fps)
for img in video_frames:
video_writer.append_data(np.array(img))
video_writer.close()
return output_video_path
def create_output_folders(output_dir, config):
out_dir = os.path.join(output_dir)
os.makedirs(out_dir, exist_ok=True)
OmegaConf.save(config, os.path.join(out_dir, 'config.yaml'))
shutil.copyfile(config.dataset.single_video_path, os.path.join(out_dir,'source.mp4'))
return out_dir
def load_primary_models(pretrained_model_path):
noise_scheduler = DDIMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler")
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder")
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae")
unet = UNet3DConditionModel.from_pretrained(pretrained_model_path, subfolder="unet")
return noise_scheduler, tokenizer, text_encoder, vae, unet
def freeze_models(models_to_freeze):
for model in models_to_freeze:
if model is not None: model.requires_grad_(False)
def is_mixed_precision(accelerator):
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
return weight_dtype
def cast_to_gpu_and_type(model_list, accelerator, weight_dtype):
for model in model_list:
if model is not None: model.to(accelerator.device, dtype=weight_dtype)
def handle_cache_latents(
should_cache,
output_dir,
train_dataloader,
train_batch_size,
vae,
unet,
pretrained_model_path,
cached_latent_dir=None,
):
# Cache latents by storing them in VRAM.
# Speeds up training and saves memory by not encoding during the train loop.
if not should_cache: return None
vae.to('cuda', dtype=torch.float16)
vae.enable_slicing()
pipe = TextToVideoSDPipeline.from_pretrained(
pretrained_model_path,
vae=vae,
unet=copy.deepcopy(unet).to('cuda', dtype=torch.float16)
)
pipe.text_encoder.to('cuda', dtype=torch.float16)
cached_latent_dir = (
os.path.abspath(cached_latent_dir) if cached_latent_dir is not None else None
)
if cached_latent_dir is None:
cache_save_dir = f"{output_dir}/cached_latents"
os.makedirs(cache_save_dir, exist_ok=True)
for i, batch in enumerate(tqdm(train_dataloader, desc="Caching Latents.")):
save_name = f"cached_{i}"
full_out_path = f"{cache_save_dir}/{save_name}.pt"
pixel_values = batch['pixel_values'].to('cuda', dtype=torch.float16)
batch['latents'] = tensor_to_vae_latent(pixel_values, vae)
batch['inversion_noise'] = inverse_video(pipe, batch['latents'], 50)
for k, v in batch.items(): batch[k] = v[0]
torch.save(batch, full_out_path)
del pixel_values
del batch
# We do this to avoid fragmentation from casting latents between devices.
torch.cuda.empty_cache()
else:
cache_save_dir = cached_latent_dir
return torch.utils.data.DataLoader(
CachedDataset(cache_dir=cache_save_dir),
batch_size=train_batch_size,
shuffle=True,
num_workers=0
)
def should_sample(global_step, validation_steps, validation_data):
return (global_step == 1 or global_step % validation_steps == 0) and validation_data.sample_preview
def save_pipe(
path,
global_step,
accelerator,
unet,
text_encoder,
vae,
output_dir,
is_checkpoint=False,
save_pretrained_model=False,
**extra_params
):
if is_checkpoint:
save_path = os.path.join(output_dir, f"checkpoint-{global_step}")
os.makedirs(save_path, exist_ok=True)
else:
save_path = output_dir
# Save the dtypes so we can continue training at the same precision.
u_dtype, t_dtype, v_dtype = unet.dtype, text_encoder.dtype, vae.dtype
# Copy the model without creating a reference to it. This allows keeping the state of our lora training if enabled.
unet_out = copy.deepcopy(accelerator.unwrap_model(unet.cpu(), keep_fp32_wrapper=False))
text_encoder_out = copy.deepcopy(accelerator.unwrap_model(text_encoder.cpu(), keep_fp32_wrapper=False))
pipeline = TextToVideoSDPipeline.from_pretrained(
path,
unet=unet_out,
text_encoder=text_encoder_out,
vae=vae,
).to(torch_dtype=torch.float32)
lora_managers_spatial = extra_params.get('lora_managers_spatial', [None])
lora_manager_spatial = lora_managers_spatial[-1]
if lora_manager_spatial is not None:
lora_manager_spatial.save_lora_weights(model=copy.deepcopy(pipeline), save_path=save_path+'/spatial', step=global_step)
save_motion_embeddings(unet_out, os.path.join(save_path, 'motion_embed.pt'))
if save_pretrained_model:
pipeline.save_pretrained(save_path)
if is_checkpoint:
unet, text_encoder = accelerator.prepare(unet, text_encoder)
models_to_cast_back = [(unet, u_dtype), (text_encoder, t_dtype), (vae, v_dtype)]
[x[0].to(accelerator.device, dtype=x[1]) for x in models_to_cast_back]
logger.info(f"Saved model at {save_path} on step {global_step}")
del pipeline
del unet_out
del text_encoder_out
torch.cuda.empty_cache()
gc.collect()
def main(config):
# Initialize the Accelerator
accelerator = Accelerator(
gradient_accumulation_steps=config.train.gradient_accumulation_steps,
mixed_precision=config.train.mixed_precision,
log_with=config.train.logger_type,
project_dir=config.train.output_dir
)
video_path = config.dataset.single_video_path
cap = cv2.VideoCapture(video_path)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = 8
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
config.dataset.width = width
config.dataset.height = height
config.dataset.fps = fps
config.dataset.n_sample_frames = frame_count
config.dataset.single_video_path = video_path
config.val.width = width
config.val.height = height
config.val.num_frames = frame_count
# Create output directories and set up logging
if accelerator.is_main_process:
output_dir = create_output_folders(config.train.output_dir, config)
create_logging(logging, logger, accelerator)
accelerate_set_verbose(accelerator)
# Load primary models
noise_scheduler, tokenizer, text_encoder, vae, unet = load_primary_models(config.model.pretrained_model_path)
# Load videoCrafter2 unet for better video quality, if needed
if config.model.unet == 'videoCrafter2':
unet = UNet3DConditionModel.from_pretrained("/hpc2hdd/home/lwang592/ziyang/cache/videocrafterv2",subfolder='unet')
elif config.model.unet == 'zeroscope_v2_576w':
# by default, we use zeroscope_v2_576w, thus this unet is already loaded
pass
else:
raise ValueError("Invalid UNet model")
freeze_models([vae, text_encoder])
handle_memory_attention(unet)
train_dataloader, train_dataset = prepare_data(config, tokenizer)
# Handle latents caching
cached_data_loader = handle_cache_latents(
config.train.cache_latents,
output_dir,
train_dataloader,
config.train.train_batch_size,
vae,
unet,
config.model.pretrained_model_path,
config.train.cached_latent_dir,
)
if cached_data_loader is not None:
train_dataloader = cached_data_loader
# Prepare parameters and optimization
params, extra_params = prepare_params(unet, config, train_dataset)
optimizers, lr_schedulers = prepare_optimizers(params, config, **extra_params)
# Prepare models and data for training
unet, optimizers, train_dataloader, lr_schedulers, text_encoder = accelerator.prepare(
unet, optimizers, train_dataloader, lr_schedulers, text_encoder
)
# Additional model setups
unet_and_text_g_c(unet, text_encoder)
vae.enable_slicing()
# Setup for mixed precision training
weight_dtype = is_mixed_precision(accelerator)
cast_to_gpu_and_type([text_encoder, vae], accelerator, weight_dtype)
# Recalculate training steps and epochs
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / config.train.gradient_accumulation_steps)
num_train_epochs = math.ceil(config.train.max_train_steps / num_update_steps_per_epoch)
# Initialize trackers and store configuration
if accelerator.is_main_process:
accelerator.init_trackers("motion-inversion")
# Train!
total_batch_size = config.train.train_batch_size * accelerator.num_processes * config.train.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {config.train.train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {config.train.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {config.train.max_train_steps}")
global_step = 0
first_epoch = 0
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(global_step, config.train.max_train_steps), disable=not accelerator.is_local_main_process)
progress_bar.set_description("Steps")
# Register the attention control, for Motion Value Embedding(s)
register_attention_control(unet, config=config)
for epoch in range(first_epoch, num_train_epochs):
train_loss_temporal = 0.0
for step, batch in enumerate(train_dataloader):
# Skip steps until we reach the resumed step
if config.train.resume_from_checkpoint and epoch == first_epoch and step < config.train.resume_step:
if step % config.train.gradient_accumulation_steps == 0:
progress_bar.update(1)
continue
with accelerator.accumulate(unet), accelerator.accumulate(text_encoder):
for optimizer in optimizers:
optimizer.zero_grad(set_to_none=True)
with accelerator.autocast():
if global_step == 0:
unet.train()
loss_func_to_call = globals().get(f'{config.loss.type}')
loss_temporal, train_loss_temporal = loss_func_to_call(
train_loss_temporal,
accelerator,
optimizers,
lr_schedulers,
unet,
vae,
text_encoder,
noise_scheduler,
batch,
step,
config
)
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
accelerator.log({"train_loss": train_loss_temporal}, step=global_step)
train_loss_temporal = 0.0
if global_step % config.train.checkpointing_steps == 0 and global_step > 0:
save_pipe(
config.model.pretrained_model_path,
global_step,
accelerator,
unet,
text_encoder,
vae,
output_dir,
is_checkpoint=True,
**extra_params
)
if loss_temporal is not None:
accelerator.log({"loss_temporal": loss_temporal.detach().item()}, step=step)
if global_step >= config.train.max_train_steps:
break
# Create the pipeline using the trained modules and save it.
accelerator.wait_for_everyone()
accelerator.end_training()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default='configs/config.yaml')
parser.add_argument("--single_video_path", type=str)
parser.add_argument("--prompts", type=str, help="JSON string of prompts")
args = parser.parse_args()
# Load and merge configurations
config = OmegaConf.load(args.config)
# Update the config with the command-line arguments
if args.single_video_path:
config.dataset.single_video_path = args.single_video_path
# Set the output dir
config.train.output_dir = os.path.join(config.train.output_dir, os.path.basename(args.single_video_path).split('.')[0])
if args.prompts:
config.val.prompt = json.loads(args.prompts)
main(config)