|
from easydict import EasyDict |
|
|
|
cartpole_dqfd_config = dict( |
|
exp_name='cartpole_dqfd_seed0', |
|
env=dict( |
|
collector_env_num=8, |
|
evaluator_env_num=5, |
|
n_evaluator_episode=5, |
|
stop_value=195, |
|
), |
|
policy=dict( |
|
cuda=True, |
|
priority=True, |
|
model=dict( |
|
obs_shape=4, |
|
action_shape=2, |
|
encoder_hidden_size_list=[128, 128, 64], |
|
dueling=True, |
|
), |
|
nstep=3, |
|
discount_factor=0.97, |
|
learn=dict( |
|
batch_size=64, |
|
learning_rate=0.001, |
|
lambda1=1, |
|
lambda2=3.0, |
|
|
|
|
|
lambda3=0, |
|
per_train_iter_k=10, |
|
expert_replay_buffer_size=10000, |
|
), |
|
collect=dict( |
|
n_sample=8, |
|
|
|
|
|
|
|
model_path='model_path_placeholder', |
|
), |
|
|
|
eval=dict(evaluator=dict(eval_freq=50, )), |
|
other=dict( |
|
eps=dict( |
|
type='exp', |
|
start=0.95, |
|
end=0.1, |
|
decay=10000, |
|
), |
|
replay_buffer=dict(replay_buffer_size=20000, ), |
|
), |
|
), |
|
) |
|
cartpole_dqfd_config = EasyDict(cartpole_dqfd_config) |
|
main_config = cartpole_dqfd_config |
|
cartpole_dqfd_create_config = dict( |
|
env=dict( |
|
type='cartpole', |
|
import_names=['dizoo.classic_control.cartpole.envs.cartpole_env'], |
|
), |
|
env_manager=dict(type='base'), |
|
policy=dict(type='dqfd'), |
|
) |
|
cartpole_dqfd_create_config = EasyDict(cartpole_dqfd_create_config) |
|
create_config = cartpole_dqfd_create_config |
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
|
|
|
|
from ding.entry.serial_entry_dqfd import serial_pipeline_dqfd |
|
from dizoo.classic_control.cartpole.config import cartpole_dqfd_config, cartpole_dqfd_create_config |
|
expert_main_config = cartpole_dqfd_config |
|
expert_create_config = cartpole_dqfd_create_config |
|
serial_pipeline_dqfd((main_config, create_config), (expert_main_config, expert_create_config), seed=0) |
|
|