|
import copy |
|
from typing import List, Union, Optional |
|
|
|
import gym |
|
import numpy as np |
|
from easydict import EasyDict |
|
|
|
from ding.envs.env.base_env import BaseEnv, BaseEnvTimestep |
|
from ding.torch_utils import to_ndarray |
|
from ding.utils import ENV_REGISTRY |
|
|
|
|
|
@ENV_REGISTRY.register('cliffwalking') |
|
class CliffWalkingEnv(BaseEnv): |
|
|
|
def __init__(self, cfg: dict) -> None: |
|
self._cfg = EasyDict( |
|
env_id='CliffWalking', |
|
render_mode='rgb_array', |
|
max_episode_steps=300, |
|
) |
|
self._cfg.update(cfg) |
|
self._init_flag = False |
|
self._replay_path = None |
|
self._observation_space = gym.spaces.Box(low=0, high=1, shape=(48, ), dtype=np.float32) |
|
self._env = gym.make( |
|
"CliffWalking", render_mode=self._cfg.render_mode, max_episode_steps=self._cfg.max_episode_steps |
|
) |
|
self._action_space = self._env.action_space |
|
self._reward_space = gym.spaces.Box( |
|
low=self._env.reward_range[0], high=self._env.reward_range[1], shape=(1, ), dtype=np.float32 |
|
) |
|
|
|
def reset(self) -> np.ndarray: |
|
if not self._init_flag: |
|
self._env = gym.make( |
|
"CliffWalking", render_mode=self._cfg.render_mode, max_episode_steps=self._cfg.max_episode_steps |
|
) |
|
self._init_flag = True |
|
if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed: |
|
dy_seed = self._seed + 100 * np.random.randint(1, 1000) |
|
self._env.seed(dy_seed) |
|
elif hasattr(self, '_seed'): |
|
self._env.seed(self._seed) |
|
if self._replay_path is not None: |
|
self._env = gym.wrappers.RecordVideo( |
|
self._env, |
|
video_folder=self._replay_path, |
|
episode_trigger=lambda episode_id: True, |
|
name_prefix='cliffwalking-{}'.format(id(self)) |
|
) |
|
obs = self._env.reset() |
|
obs_encode = self._encode_obs(obs) |
|
self._eval_episode_return = 0. |
|
return obs_encode |
|
|
|
def close(self) -> None: |
|
try: |
|
self._env.close() |
|
del self._env |
|
except: |
|
pass |
|
|
|
def seed(self, seed: int, dynamic_seed: bool = True) -> None: |
|
self._seed = seed |
|
self._dynamic_seed = dynamic_seed |
|
np.random.seed(seed) |
|
|
|
def step(self, action: Union[int, np.ndarray]) -> BaseEnvTimestep: |
|
if isinstance(action, np.ndarray): |
|
if action.shape == (1, ): |
|
action = action.squeeze() |
|
action = action.item() |
|
obs, reward, done, info = self._env.step(action) |
|
obs_encode = self._encode_obs(obs) |
|
self._eval_episode_return += reward |
|
reward = to_ndarray([reward], dtype=np.float32) |
|
if done: |
|
info['eval_episode_return'] = self._eval_episode_return |
|
return BaseEnvTimestep(obs_encode, reward, done, info) |
|
|
|
def enable_save_replay(self, replay_path: Optional[str] = None) -> None: |
|
if replay_path is None: |
|
replay_path = './video' |
|
self._replay_path = replay_path |
|
|
|
def random_action(self) -> np.ndarray: |
|
random_action = self.action_space.sample() |
|
if isinstance(random_action, int): |
|
random_action = to_ndarray([random_action], dtype=np.int64) |
|
return random_action |
|
|
|
def _encode_obs(self, obs) -> np.ndarray: |
|
onehot = np.zeros(48, dtype=np.float32) |
|
onehot[int(obs)] = 1 |
|
return onehot |
|
|
|
@property |
|
def observation_space(self) -> gym.spaces.Space: |
|
return self._observation_space |
|
|
|
@property |
|
def action_space(self) -> gym.spaces.Space: |
|
return self._action_space |
|
|
|
@property |
|
def reward_space(self) -> gym.spaces.Space: |
|
return self._reward_space |
|
|
|
def __repr__(self) -> str: |
|
return "DI-engine CliffWalking Env" |
|
|