zjowowen's picture
init space
079c32c
raw
history blame
No virus
15.2 kB
from typing import List, Dict, Any, Tuple, Union, Optional
from collections import namedtuple, deque
import torch
import copy
from ding.torch_utils import Adam, to_device
from ding.rl_utils import ppo_data, ppo_error, ppo_policy_error, ppo_policy_data, get_gae_with_default_last_value, \
v_nstep_td_data, v_nstep_td_error, get_nstep_return_data, get_train_sample
from ding.model import model_wrap
from ding.utils import POLICY_REGISTRY, deep_merge_dicts
from ding.utils.data import default_collate, default_decollate
from ding.policy.base_policy import Policy
from ding.policy.common_utils import default_preprocess_learn
from ding.policy.command_mode_policy_instance import DummyCommandModePolicy
@POLICY_REGISTRY.register('ppo_lstm')
class PPOPolicy(Policy):
r"""
Overview:
Policy class of PPO algorithm.
"""
config = dict(
# (str) RL policy register name (refer to function "POLICY_REGISTRY").
type='ppo_lstm',
# (bool) Whether to use cuda for network.
cuda=False,
# (bool) Whether the RL algorithm is on-policy or off-policy. (Note: in practice PPO can be off-policy used)
on_policy=True,
# (bool) Whether to use priority(priority sample, IS weight, update priority)
priority=False,
# (bool) Whether use Importance Sampling Weight to correct biased update. If True, priority must be True.
priority_IS_weight=False,
# (bool) Whether to use nstep_return for value loss
nstep_return=False,
nstep=3,
learn=dict(
# How many updates(iterations) to train after collector's one collection.
# Bigger "update_per_collect" means bigger off-policy.
# collect data -> update policy-> collect data -> ...
update_per_collect=5,
batch_size=64,
learning_rate=0.001,
# ==============================================================
# The following configs is algorithm-specific
# ==============================================================
# (float) The loss weight of value network, policy network weight is set to 1
value_weight=0.5,
# (float) The loss weight of entropy regularization, policy network weight is set to 1
entropy_weight=0.01,
# (float) PPO clip ratio, defaults to 0.2
clip_ratio=0.2,
# (bool) Whether to use advantage norm in a whole training batch
adv_norm=False,
ignore_done=False,
),
collect=dict(
# (int) Only one of [n_sample, n_episode] shoule be set
# n_sample=64,
# (int) Cut trajectories into pieces with length "unroll_len".
unroll_len=1,
# ==============================================================
# The following configs is algorithm-specific
# ==============================================================
# (float) Reward's future discount factor, aka. gamma.
discount_factor=0.99,
# (float) GAE lambda factor for the balance of bias and variance(1-step td and mc)
gae_lambda=0.95,
),
eval=dict(),
# Although ppo is an on-policy algorithm, ding reuses the buffer mechanism, and clear buffer after update.
# Note replay_buffer_size must be greater than n_sample.
other=dict(replay_buffer=dict(replay_buffer_size=1000, ), ),
)
def _init_learn(self) -> None:
r"""
Overview:
Learn mode init method. Called by ``self.__init__``.
Init the optimizer, algorithm config and the main model.
"""
self._priority = self._cfg.priority
self._priority_IS_weight = self._cfg.priority_IS_weight
assert not self._priority and not self._priority_IS_weight, "Priority is not implemented in PPO"
# Orthogonal init
for m in self._model.modules():
if isinstance(m, torch.nn.Conv2d):
torch.nn.init.orthogonal_(m.weight)
if isinstance(m, torch.nn.Linear):
torch.nn.init.orthogonal_(m.weight)
# Optimizer
self._optimizer = Adam(self._model.parameters(), lr=self._cfg.learn.learning_rate)
self._learn_model = model_wrap(self._model, wrapper_name='base')
# self._learn_model = model_wrap(self._learn_model, wrapper_name='hidden_state', state_num=self._cfg.learn.batch_size)
# Algorithm config
self._value_weight = self._cfg.learn.value_weight
self._entropy_weight = self._cfg.learn.entropy_weight
self._clip_ratio = self._cfg.learn.clip_ratio
self._adv_norm = self._cfg.learn.adv_norm
self._nstep = self._cfg.nstep
self._nstep_return = self._cfg.nstep_return
# Main model
self._learn_model.reset()
def _forward_learn(self, data: dict) -> Dict[str, Any]:
r"""
Overview:
Forward and backward function of learn mode.
Arguments:
- data (:obj:`dict`): Dict type data
Returns:
- info_dict (:obj:`Dict[str, Any]`):
Including current lr, total_loss, policy_loss, value_loss, entropy_loss, \
adv_abs_max, approx_kl, clipfrac
"""
data = default_preprocess_learn(data, ignore_done=self._cfg.learn.ignore_done, use_nstep=self._nstep_return)
if self._cuda:
data = to_device(data, self._device)
# ====================
# PPO forward
# ====================
self._learn_model.train()
# normal ppo
if not self._nstep_return:
output = self._learn_model.forward(data['obs'])
adv = data['adv']
if self._adv_norm:
# Normalize advantage in a total train_batch
adv = (adv - adv.mean()) / (adv.std() + 1e-8)
return_ = data['value'] + adv
# Calculate ppo error
ppodata = ppo_data(
output['logit'], data['logit'], data['action'], output['value'], data['value'], adv, return_,
data['weight']
)
ppo_loss, ppo_info = ppo_error(ppodata, self._clip_ratio)
wv, we = self._value_weight, self._entropy_weight
total_loss = ppo_loss.policy_loss + wv * ppo_loss.value_loss - we * ppo_loss.entropy_loss
else:
output = self._learn_model.forward(data['obs'])
adv = data['adv']
if self._adv_norm:
# Normalize advantage in a total train_batch
adv = (adv - adv.mean()) / (adv.std() + 1e-8)
# Calculate ppo error
ppodata = ppo_policy_data(output['logit'], data['logit'], data['action'], adv, data['weight'])
ppo_policy_loss, ppo_info = ppo_policy_error(ppodata, self._clip_ratio)
wv, we = self._value_weight, self._entropy_weight
next_obs = data.get('next_obs')
value_gamma = data.get('value_gamma')
reward = data.get('reward')
# current value
value = self._learn_model.forward(data['obs'])
# target value
next_data = {'obs': next_obs}
target_value = self._learn_model.forward(next_data['obs'])
# TODO what should we do here to keep shape
assert self._nstep > 1
td_data = v_nstep_td_data(
value['value'], target_value['value'], reward.t(), data['done'], data['weight'], value_gamma
)
#calculate v_nstep_td critic_loss
critic_loss, td_error_per_sample = v_nstep_td_error(td_data, self._gamma, self._nstep)
ppo_loss_data = namedtuple('ppo_loss', ['policy_loss', 'value_loss', 'entropy_loss'])
ppo_loss = ppo_loss_data(ppo_policy_loss.policy_loss, critic_loss, ppo_policy_loss.entropy_loss)
total_loss = ppo_policy_loss.policy_loss + wv * critic_loss - we * ppo_policy_loss.entropy_loss
# ====================
# PPO update
# ====================
self._optimizer.zero_grad()
total_loss.backward()
self._optimizer.step()
return {
'cur_lr': self._optimizer.defaults['lr'],
'total_loss': total_loss.item(),
'policy_loss': ppo_loss.policy_loss.item(),
'value_loss': ppo_loss.value_loss.item(),
'entropy_loss': ppo_loss.entropy_loss.item(),
'adv_abs_max': adv.abs().max().item(),
'approx_kl': ppo_info.approx_kl,
'clipfrac': ppo_info.clipfrac,
}
def _state_dict_learn(self) -> Dict[str, Any]:
return {
'model': self._learn_model.state_dict(),
'optimizer': self._optimizer.state_dict(),
}
def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None:
self._learn_model.load_state_dict(state_dict['model'])
self._optimizer.load_state_dict(state_dict['optimizer'])
def _init_collect(self) -> None:
r"""
Overview:
Collect mode init method. Called by ``self.__init__``.
Init traj and unroll length, collect model.
"""
self._unroll_len = self._cfg.collect.unroll_len
self._collect_model = model_wrap(self._model, wrapper_name='multinomial_sample')
# self._collect_model = model_wrap(
# self._collect_model, wrapper_name='hidden_state', state_num=self._cfg.collect.env_num, save_prev_state=True
# )
self._collect_model.reset()
self._gamma = self._cfg.collect.discount_factor
self._gae_lambda = self._cfg.collect.gae_lambda
self._nstep = self._cfg.nstep
self._nstep_return = self._cfg.nstep_return
def _forward_collect(self, data: dict) -> dict:
r"""
Overview:
Forward function of collect mode.
Arguments:
- data (:obj:`Dict[str, Any]`): Dict type data, stacked env data for predicting policy_output(action), \
values are torch.Tensor or np.ndarray or dict/list combinations, keys are env_id indicated by integer.
Returns:
- output (:obj:`Dict[int, Any]`): Dict type data, including at least inferred action according to input obs.
ReturnsKeys
- necessary: ``action``
"""
data_id = list(data.keys())
data = default_collate(list(data.values()))
if self._cuda:
data = to_device(data, self._device)
self._collect_model.eval()
with torch.no_grad():
output = self._collect_model.forward(data)
if self._cuda:
output = to_device(output, 'cpu')
output = default_decollate(output)
return {i: d for i, d in zip(data_id, output)}
def _process_transition(self, obs: Any, model_output: dict, timestep: namedtuple) -> dict:
"""
Overview:
Generate dict type transition data from inputs.
Arguments:
- obs (:obj:`Any`): Env observation
- model_output (:obj:`dict`): Output of collect model, including at least ['action']
- timestep (:obj:`namedtuple`): Output after env step, including at least ['obs', 'reward', 'done']\
(here 'obs' indicates obs after env step).
Returns:
- transition (:obj:`dict`): Dict type transition data.
"""
if not self._nstep_return:
transition = {
'obs': obs,
'logit': model_output['logit'],
'action': model_output['action'],
'value': model_output['value'],
'prev_state': model_output['prev_state'],
'reward': timestep.reward,
'done': timestep.done,
}
else:
transition = {
'obs': obs,
'next_obs': timestep.obs,
'logit': model_output['logit'],
'action': model_output['action'],
'prev_state': model_output['prev_state'],
'value': model_output['value'],
'reward': timestep.reward,
'done': timestep.done,
}
return transition
def _get_train_sample(self, data: deque) -> Union[None, List[Any]]:
r"""
Overview:
Get the trajectory and calculate GAE, return one data to cache for next time calculation
Arguments:
- data (:obj:`deque`): The trajectory's cache
Returns:
- samples (:obj:`dict`): The training samples generated
"""
data = get_gae_with_default_last_value(
data,
data[-1]['done'],
gamma=self._gamma,
gae_lambda=self._gae_lambda,
cuda=self._cuda,
)
if not self._nstep_return:
return get_train_sample(data, self._unroll_len)
else:
return get_nstep_return_data(data, self._nstep)
def _init_eval(self) -> None:
r"""
Overview:
Evaluate mode init method. Called by ``self.__init__``.
Init eval model with argmax strategy.
"""
self._eval_model = model_wrap(self._model, wrapper_name='argmax_sample')
# self._eval_model = model_wrap(self._model, wrapper_name='hidden_state', state_num=self._cfg.eval.env_num)
self._eval_model.reset()
def _forward_eval(self, data: dict) -> dict:
r"""
Overview:
Forward function of eval mode, similar to ``self._forward_collect``.
Arguments:
- data (:obj:`Dict[str, Any]`): Dict type data, stacked env data for predicting policy_output(action), \
values are torch.Tensor or np.ndarray or dict/list combinations, keys are env_id indicated by integer.
Returns:
- output (:obj:`Dict[int, Any]`): The dict of predicting action for the interaction with env.
ReturnsKeys
- necessary: ``action``
"""
data_id = list(data.keys())
data = default_collate(list(data.values()))
if self._cuda:
data = to_device(data, self._device)
# data = {'obs': data}
self._eval_model.eval()
with torch.no_grad():
output = self._eval_model.forward(data[0])
if self._cuda:
output = to_device(output, 'cpu')
output = default_decollate(output)
return {i: d for i, d in zip(data_id, output)}
def _reset_eval(self, data_id: Optional[List[int]] = None) -> None:
self._eval_model.reset(data_id=data_id)
def default_model(self) -> Tuple[str, List[str]]:
return 'vac', ['ding.model.template.vac']
def _monitor_vars_learn(self) -> List[str]:
return super()._monitor_vars_learn() + [
'policy_loss', 'value_loss', 'entropy_loss', 'adv_abs_max', 'approx_kl', 'clipfrac'
]
@POLICY_REGISTRY.register('ppo_lstm_command')
class PPOCommandModePolicy(PPOPolicy, DummyCommandModePolicy):
pass