|
from typing import Any, List, Union, Sequence |
|
import copy |
|
import gym |
|
import numpy as np |
|
from ding.envs import BaseEnv, BaseEnvTimestep |
|
from ding.utils import ENV_REGISTRY |
|
from ding.torch_utils import to_ndarray, to_list |
|
from .atari_wrappers import wrap_deepmind |
|
|
|
from pprint import pprint |
|
|
|
|
|
def PomdpEnv(cfg, only_info=False): |
|
''' |
|
For debug purpose, create an env follow openai gym standard so it can be widely test by |
|
other library with same environment setting in DI-engine |
|
env = PomdpEnv(cfg) |
|
obs = env.reset() |
|
obs, reward, done, info = env.step(action) |
|
''' |
|
env = wrap_deepmind( |
|
cfg.env_id, |
|
frame_stack=cfg.frame_stack, |
|
episode_life=cfg.is_train, |
|
clip_rewards=cfg.is_train, |
|
warp_frame=cfg.warp_frame, |
|
use_ram=cfg.use_ram, |
|
render=cfg.render, |
|
pomdp=cfg.pomdp, |
|
only_info=only_info, |
|
) |
|
return env |
|
|
|
|
|
@ENV_REGISTRY.register('pomdp') |
|
class PomdpAtariEnv(BaseEnv): |
|
|
|
def __init__(self, cfg: dict) -> None: |
|
self._cfg = cfg |
|
self._init_flag = False |
|
|
|
def reset(self) -> Sequence: |
|
if not self._init_flag: |
|
self._env = self._make_env(only_info=False) |
|
self._init_flag = True |
|
self._observation_space = self._env.observation_space |
|
self._action_space = self._env.action_space |
|
self._reward_space = gym.spaces.Box( |
|
low=self._env.reward_range[0], high=self._env.reward_range[1], shape=(1, ), dtype=np.float32 |
|
) |
|
if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed: |
|
np_seed = 100 * np.random.randint(1, 1000) |
|
self._env.seed(self._seed + np_seed) |
|
elif hasattr(self, '_seed'): |
|
self._env.seed(self._seed) |
|
obs = self._env.reset() |
|
obs = to_ndarray(obs) |
|
self._eval_episode_return = 0. |
|
return obs |
|
|
|
def close(self) -> None: |
|
if self._init_flag: |
|
self._env.close() |
|
self._init_flag = False |
|
|
|
def seed(self, seed: int, dynamic_seed: bool = True) -> None: |
|
self._seed = seed |
|
self._dynamic_seed = dynamic_seed |
|
np.random.seed(self._seed) |
|
|
|
def step(self, action: np.ndarray) -> BaseEnvTimestep: |
|
assert isinstance(action, np.ndarray), type(action) |
|
action = action.item() |
|
obs, rew, done, info = self._env.step(action) |
|
self._eval_episode_return += rew |
|
obs = to_ndarray(obs) |
|
rew = to_ndarray([rew]) |
|
if done: |
|
info['eval_episode_return'] = self._eval_episode_return |
|
return BaseEnvTimestep(obs, rew, done, info) |
|
|
|
def _make_env(self, only_info=False): |
|
return wrap_deepmind( |
|
self._cfg.env_id, |
|
episode_life=self._cfg.is_train, |
|
clip_rewards=self._cfg.is_train, |
|
pomdp=self._cfg.pomdp, |
|
frame_stack=self._cfg.frame_stack, |
|
warp_frame=self._cfg.warp_frame, |
|
use_ram=self._cfg.use_ram, |
|
only_info=only_info, |
|
) |
|
|
|
def __repr__(self) -> str: |
|
return "DI-engine POMDP Atari Env({})".format(self._cfg.env_id) |
|
|
|
@staticmethod |
|
def create_collector_env_cfg(cfg: dict) -> List[dict]: |
|
collector_env_num = cfg.pop('collector_env_num', 1) |
|
cfg = copy.deepcopy(cfg) |
|
cfg.is_train = True |
|
return [cfg for _ in range(collector_env_num)] |
|
|
|
@staticmethod |
|
def create_evaluator_env_cfg(cfg: dict) -> List[dict]: |
|
evaluator_env_num = cfg.pop('evaluator_env_num', 1) |
|
cfg = copy.deepcopy(cfg) |
|
cfg.is_train = False |
|
return [cfg for _ in range(evaluator_env_num)] |
|
|
|
@property |
|
def observation_space(self) -> gym.spaces.Space: |
|
return self._observation_space |
|
|
|
@property |
|
def action_space(self) -> gym.spaces.Space: |
|
return self._action_space |
|
|
|
@property |
|
def reward_space(self) -> gym.spaces.Space: |
|
return self._reward_space |
|
|