gomoku / LightZero /lzero /mcts /buffer /game_buffer_stochastic_muzero.py
zjowowen's picture
init space
079c32c
raw
history blame
No virus
8.18 kB
from typing import Any, Tuple, List
import numpy as np
from ding.utils import BUFFER_REGISTRY
from lzero.mcts.utils import prepare_observation
from .game_buffer_muzero import MuZeroGameBuffer
@BUFFER_REGISTRY.register('game_buffer_stochastic_muzero')
class StochasticMuZeroGameBuffer(MuZeroGameBuffer):
"""
Overview:
The specific game buffer for Stochastic MuZero policy.
"""
def __init__(self, cfg: dict):
super().__init__(cfg)
"""
Overview:
Use the default configuration mechanism. If a user passes in a cfg with a key that matches an existing key
in the default configuration, the user-provided value will override the default configuration. Otherwise,
the default configuration will be used.
"""
default_config = self.default_config()
default_config.update(cfg)
self._cfg = default_config
assert self._cfg.env_type in ['not_board_games', 'board_games']
assert self._cfg.action_type in ['fixed_action_space', 'varied_action_space']
self.replay_buffer_size = self._cfg.replay_buffer_size
self.batch_size = self._cfg.batch_size
self._alpha = self._cfg.priority_prob_alpha
self._beta = self._cfg.priority_prob_beta
self.keep_ratio = 1
self.model_update_interval = 10
self.num_of_collected_episodes = 0
self.base_idx = 0
self.clear_time = 0
self.game_segment_buffer = []
self.game_pos_priorities = []
self.game_segment_game_pos_look_up = []
def _make_batch(self, batch_size: int, reanalyze_ratio: float) -> Tuple[Any]:
"""
Overview:
first sample orig_data through ``_sample_orig_data()``,
then prepare the context of a batch:
reward_value_context: the context of reanalyzed value targets
policy_re_context: the context of reanalyzed policy targets
policy_non_re_context: the context of non-reanalyzed policy targets
current_batch: the inputs of batch
Arguments:
- batch_size (:obj:`int`): the batch size of orig_data from replay buffer.
- reanalyze_ratio (:obj:`float`): ratio of reanalyzed policy (value is 100% reanalyzed)
Returns:
- context (:obj:`Tuple`): reward_value_context, policy_re_context, policy_non_re_context, current_batch
"""
# obtain the batch context from replay buffer
orig_data = self._sample_orig_data(batch_size)
game_segment_list, pos_in_game_segment_list, batch_index_list, weights_list, make_time_list = orig_data
batch_size = len(batch_index_list)
obs_list, action_list, mask_list = [], [], []
if self._cfg.use_ture_chance_label_in_chance_encoder:
chance_list = []
# prepare the inputs of a batch
for i in range(batch_size):
game = game_segment_list[i]
pos_in_game_segment = pos_in_game_segment_list[i]
actions_tmp = game.action_segment[pos_in_game_segment:pos_in_game_segment +
self._cfg.num_unroll_steps].tolist()
if self._cfg.use_ture_chance_label_in_chance_encoder:
chances_tmp = game.chance_segment[1 + pos_in_game_segment:1 + pos_in_game_segment +
self._cfg.num_unroll_steps].tolist()
# add mask for invalid actions (out of trajectory)
mask_tmp = [1. for i in range(len(actions_tmp))]
mask_tmp += [0. for _ in range(self._cfg.num_unroll_steps - len(mask_tmp))]
# pad random action
actions_tmp += [
np.random.randint(0, game.action_space_size)
for _ in range(self._cfg.num_unroll_steps - len(actions_tmp))
]
if self._cfg.use_ture_chance_label_in_chance_encoder:
chances_tmp += [
np.random.randint(0, game.action_space_size)
for _ in range(self._cfg.num_unroll_steps - len(chances_tmp))
]
# obtain the input observations
# pad if length of obs in game_segment is less than stack+num_unroll_steps
# e.g. stack+num_unroll_steps 4+5
obs_list.append(
game_segment_list[i].get_unroll_obs(
pos_in_game_segment_list[i], num_unroll_steps=self._cfg.num_unroll_steps, padding=True
)
)
action_list.append(actions_tmp)
mask_list.append(mask_tmp)
if self._cfg.use_ture_chance_label_in_chance_encoder:
chance_list.append(chances_tmp)
# formalize the input observations
obs_list = prepare_observation(obs_list, self._cfg.model.model_type)
# formalize the inputs of a batch
if self._cfg.use_ture_chance_label_in_chance_encoder:
current_batch = [obs_list, action_list, mask_list, batch_index_list, weights_list, make_time_list,
chance_list]
else:
current_batch = [obs_list, action_list, mask_list, batch_index_list, weights_list, make_time_list]
for i in range(len(current_batch)):
current_batch[i] = np.asarray(current_batch[i])
total_transitions = self.get_num_of_transitions()
# obtain the context of value targets
reward_value_context = self._prepare_reward_value_context(
batch_index_list, game_segment_list, pos_in_game_segment_list, total_transitions
)
"""
only reanalyze recent reanalyze_ratio (e.g. 50%) data
if self._cfg.reanalyze_outdated is True, batch_index_list is sorted according to its generated env_steps
0: reanalyze_num -> reanalyzed policy, reanalyze_num:end -> non reanalyzed policy
"""
reanalyze_num = int(batch_size * reanalyze_ratio)
# reanalyzed policy
if reanalyze_num > 0:
# obtain the context of reanalyzed policy targets
policy_re_context = self._prepare_policy_reanalyzed_context(
batch_index_list[:reanalyze_num], game_segment_list[:reanalyze_num],
pos_in_game_segment_list[:reanalyze_num]
)
else:
policy_re_context = None
# non reanalyzed policy
if reanalyze_num < batch_size:
# obtain the context of non-reanalyzed policy targets
policy_non_re_context = self._prepare_policy_non_reanalyzed_context(
batch_index_list[reanalyze_num:], game_segment_list[reanalyze_num:],
pos_in_game_segment_list[reanalyze_num:]
)
else:
policy_non_re_context = None
context = reward_value_context, policy_re_context, policy_non_re_context, current_batch
return context
def update_priority(self, train_data: List[np.ndarray], batch_priorities: Any) -> None:
"""
Overview:
Update the priority of training data.
Arguments:
- train_data (:obj:`Optional[List[Optional[np.ndarray]]]`): training data to be updated priority.
- batch_priorities (:obj:`batch_priorities`): priorities to update to.
NOTE:
train_data = [current_batch, target_batch]
if self._cfg.use_ture_chance_label_in_chance_encoder:
obs_batch_orig, action_batch, mask_batch, indices, weights, make_time, chance_batch = current_batch
else:
obs_batch_orig, action_batch, mask_batch, indices, weights, make_time = current_batch
"""
indices = train_data[0][3]
metas = {'make_time': train_data[0][5], 'batch_priorities': batch_priorities}
# only update the priorities for data still in replay buffer
for i in range(len(indices)):
if metas['make_time'][i] > self.clear_time:
idx, prio = indices[i], metas['batch_priorities'][i]
self.game_pos_priorities[idx] = prio