|
from typing import Optional, Tuple |
|
|
|
import torch |
|
import torch.nn as nn |
|
from ding.utils import MODEL_REGISTRY, SequenceType |
|
|
|
from .common import RepresentationNetworkMLP, PredictionNetworkMLP |
|
from .muzero_model_mlp import DynamicsNetwork |
|
from .stochastic_muzero_model import StochasticMuZeroModel, ChanceEncoder |
|
from .utils import renormalize |
|
|
|
|
|
@MODEL_REGISTRY.register('StochasticMuZeroModelMLP') |
|
class StochasticMuZeroModelMLP(StochasticMuZeroModel): |
|
|
|
def __init__( |
|
self, |
|
observation_shape: int = 2, |
|
action_space_size: int = 6, |
|
chance_space_size: int = 2, |
|
latent_state_dim: int = 256, |
|
fc_reward_layers: SequenceType = [32], |
|
fc_value_layers: SequenceType = [32], |
|
fc_policy_layers: SequenceType = [32], |
|
reward_support_size: int = 601, |
|
value_support_size: int = 601, |
|
proj_hid: int = 1024, |
|
proj_out: int = 1024, |
|
pred_hid: int = 512, |
|
pred_out: int = 1024, |
|
self_supervised_learning_loss: bool = False, |
|
categorical_distribution: bool = True, |
|
activation: Optional[nn.Module] = nn.ReLU(inplace=True), |
|
last_linear_layer_init_zero: bool = True, |
|
state_norm: bool = False, |
|
discrete_action_encoding_type: str = 'one_hot', |
|
norm_type: Optional[str] = 'BN', |
|
res_connection_in_dynamics: bool = False, |
|
*args, |
|
**kwargs |
|
): |
|
""" |
|
Overview: |
|
The definition of the network model of Stochastic, which is a generalization version for 1D vector obs. \ |
|
The networks are mainly built on fully connected layers. \ |
|
The representation network is an MLP network which maps the raw observation to a latent state. \ |
|
The dynamics network is an MLP network which predicts the next latent state, and reward given the current latent state and action. \ |
|
The prediction network is an MLP network which predicts the value and policy given the current latent state. |
|
Arguments: |
|
- observation_shape (:obj:`int`): Observation space shape, e.g. 8 for Lunarlander. |
|
- action_space_size: (:obj:`int`): Action space size, usually an integer number for discrete action space. |
|
- action_space_size: (:obj:`int`): Action space size, e.g. 4 for Lunarlander. |
|
- latent_state_dim (:obj:`int`): The dimension of latent state, such as 256. |
|
- fc_reward_layers (:obj:`SequenceType`): The number of hidden layers of the reward head (MLP head). |
|
- fc_value_layers (:obj:`SequenceType`): The number of hidden layers used in value head (MLP head). |
|
- fc_policy_layers (:obj:`SequenceType`): The number of hidden layers used in policy head (MLP head). |
|
- reward_support_size (:obj:`int`): The size of categorical reward output |
|
- value_support_size (:obj:`int`): The size of categorical value output. |
|
- proj_hid (:obj:`int`): The size of projection hidden layer. |
|
- proj_out (:obj:`int`): The size of projection output layer. |
|
- pred_hid (:obj:`int`): The size of prediction hidden layer. |
|
- pred_out (:obj:`int`): The size of prediction output layer. |
|
- self_supervised_learning_loss (:obj:`bool`): Whether to use self_supervised_learning related networks in Stochastic model, default set it to False. |
|
- categorical_distribution (:obj:`bool`): Whether to use discrete support to represent categorical distribution for value, reward/value_prefix. |
|
- activation (:obj:`Optional[nn.Module]`): Activation function used in network, which often use in-place \ |
|
operation to speedup, e.g. ReLU(inplace=True). |
|
- last_linear_layer_init_zero (:obj:`bool`): Whether to use zero initializations for the last layer of value/policy mlp, default sets it to True. |
|
- state_norm (:obj:`bool`): Whether to use normalization for latent states, default sets it to True. |
|
- discrete_action_encoding_type (:obj:`str`): The encoding type of discrete action, which can be 'one_hot' or 'not_one_hot'. |
|
- norm_type (:obj:`str`): The type of normalization in networks. defaults to 'BN'. |
|
- res_connection_in_dynamics (:obj:`bool`): Whether to use residual connection for dynamics network, default set it to False. |
|
""" |
|
super(StochasticMuZeroModelMLP, self).__init__() |
|
self.categorical_distribution = categorical_distribution |
|
if not self.categorical_distribution: |
|
self.reward_support_size = 1 |
|
self.value_support_size = 1 |
|
else: |
|
self.reward_support_size = reward_support_size |
|
self.value_support_size = value_support_size |
|
|
|
self.action_space_size = action_space_size |
|
self.chance_space_size = chance_space_size |
|
|
|
self.continuous_action_space = False |
|
|
|
|
|
self.action_space_dim = action_space_size if self.continuous_action_space else 1 |
|
assert discrete_action_encoding_type in ['one_hot', 'not_one_hot'], discrete_action_encoding_type |
|
self.discrete_action_encoding_type = discrete_action_encoding_type |
|
if self.continuous_action_space: |
|
self.action_encoding_dim = action_space_size |
|
else: |
|
if self.discrete_action_encoding_type == 'one_hot': |
|
self.action_encoding_dim = action_space_size |
|
elif self.discrete_action_encoding_type == 'not_one_hot': |
|
self.action_encoding_dim = 1 |
|
|
|
self.latent_state_dim = latent_state_dim |
|
self.proj_hid = proj_hid |
|
self.proj_out = proj_out |
|
self.pred_hid = pred_hid |
|
self.pred_out = pred_out |
|
self.self_supervised_learning_loss = self_supervised_learning_loss |
|
self.last_linear_layer_init_zero = last_linear_layer_init_zero |
|
self.state_norm = state_norm |
|
self.res_connection_in_dynamics = res_connection_in_dynamics |
|
|
|
self.representation_network = RepresentationNetworkMLP( |
|
observation_shape=observation_shape, hidden_channels=self.latent_state_dim, norm_type=norm_type |
|
) |
|
|
|
|
|
self.chance_encoder = ChanceEncoder(observation_shape * 2, chance_space_size, encoder_backbone_type='mlp') |
|
self.dynamics_network = DynamicsNetwork( |
|
action_encoding_dim=self.action_encoding_dim, |
|
num_channels=self.latent_state_dim + self.action_encoding_dim, |
|
common_layer_num=2, |
|
fc_reward_layers=fc_reward_layers, |
|
output_support_size=self.reward_support_size, |
|
last_linear_layer_init_zero=self.last_linear_layer_init_zero, |
|
norm_type=norm_type, |
|
res_connection_in_dynamics=self.res_connection_in_dynamics, |
|
) |
|
|
|
self.prediction_network = PredictionNetworkMLP( |
|
action_space_size=action_space_size, |
|
num_channels=latent_state_dim, |
|
fc_value_layers=fc_value_layers, |
|
fc_policy_layers=fc_policy_layers, |
|
output_support_size=self.value_support_size, |
|
last_linear_layer_init_zero=self.last_linear_layer_init_zero, |
|
norm_type=norm_type |
|
) |
|
|
|
self.afterstate_dynamics_network = AfterstateDynamicsNetwork( |
|
action_encoding_dim=self.action_encoding_dim, |
|
num_channels=self.latent_state_dim + self.action_encoding_dim, |
|
common_layer_num=2, |
|
fc_reward_layers=fc_reward_layers, |
|
output_support_size=self.reward_support_size, |
|
last_linear_layer_init_zero=self.last_linear_layer_init_zero, |
|
norm_type=norm_type, |
|
res_connection_in_dynamics=self.res_connection_in_dynamics, |
|
) |
|
self.afterstate_prediction_network = AfterstatePredictionNetworkMLP( |
|
chance_space_size=chance_space_size, |
|
num_channels=latent_state_dim, |
|
fc_value_layers=fc_value_layers, |
|
fc_policy_layers=fc_policy_layers, |
|
output_support_size=self.value_support_size, |
|
last_linear_layer_init_zero=self.last_linear_layer_init_zero, |
|
norm_type=norm_type |
|
) |
|
|
|
if self.self_supervised_learning_loss: |
|
|
|
self.projection_input_dim = latent_state_dim |
|
|
|
self.projection = nn.Sequential( |
|
nn.Linear(self.projection_input_dim, self.proj_hid), nn.BatchNorm1d(self.proj_hid), activation, |
|
nn.Linear(self.proj_hid, self.proj_hid), nn.BatchNorm1d(self.proj_hid), activation, |
|
nn.Linear(self.proj_hid, self.proj_out), nn.BatchNorm1d(self.proj_out) |
|
) |
|
self.prediction_head = nn.Sequential( |
|
nn.Linear(self.proj_out, self.pred_hid), |
|
nn.BatchNorm1d(self.pred_hid), |
|
activation, |
|
nn.Linear(self.pred_hid, self.pred_out), |
|
) |
|
|
|
def _dynamics(self, latent_state: torch.Tensor, action: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: |
|
""" |
|
Overview: |
|
Concatenate ``latent_state`` and ``action`` and use the dynamics network to predict ``next_latent_state`` \ |
|
``reward`` and ``next_reward_hidden_state``. |
|
Arguments: |
|
- latent_state (:obj:`torch.Tensor`): The encoding latent state of input state. |
|
- reward_hidden_state (:obj:`Tuple[torch.Tensor]`): The input hidden state of LSTM about reward. |
|
- action (:obj:`torch.Tensor`): The predicted action to rollout. |
|
Returns: |
|
- next_latent_state (:obj:`torch.Tensor`): The predicted latent state of the next timestep. |
|
- next_reward_hidden_state (:obj:`Tuple[torch.Tensor]`): The output hidden state of LSTM about reward. |
|
- reward (:obj:`torch.Tensor`): The predicted reward for input state. |
|
Shapes: |
|
- latent_state (:obj:`torch.Tensor`): :math:`(B, H)`, where B is batch_size, H is the dimension of latent state. |
|
- action (:obj:`torch.Tensor`): :math:`(B, )`, where B is batch_size. |
|
- next_latent_state (:obj:`torch.Tensor`): :math:`(B, H)`, where B is batch_size, H is the dimension of latent state. |
|
- reward (:obj:`torch.Tensor`): :math:`(B, reward_support_size)`, where B is batch_size. |
|
""" |
|
|
|
|
|
|
|
if self.discrete_action_encoding_type == 'one_hot': |
|
|
|
if len(action.shape) == 1: |
|
|
|
|
|
action = action.unsqueeze(-1) |
|
|
|
|
|
|
|
action_one_hot = torch.zeros(action.shape[0], self.action_space_size, device=action.device) |
|
|
|
action = action.long() |
|
action_one_hot.scatter_(1, action, 1) |
|
action_encoding = action_one_hot |
|
elif self.discrete_action_encoding_type == 'not_one_hot': |
|
action_encoding = action / self.action_space_size |
|
if len(action_encoding.shape) == 1: |
|
|
|
|
|
action_encoding = action_encoding.unsqueeze(-1) |
|
|
|
action_encoding = action_encoding.to(latent_state.device).float() |
|
|
|
|
|
state_action_encoding = torch.cat((latent_state, action_encoding), dim=1) |
|
|
|
next_latent_state, reward = self.dynamics_network(state_action_encoding) |
|
|
|
if not self.state_norm: |
|
return next_latent_state, reward |
|
else: |
|
next_latent_state_normalized = renormalize(next_latent_state) |
|
return next_latent_state_normalized, reward |
|
|
|
def _afterstate_dynamics(self, latent_state: torch.Tensor, action: torch.Tensor) -> Tuple[ |
|
torch.Tensor, torch.Tensor]: |
|
""" |
|
Overview: |
|
Concatenate ``latent_state`` and ``action`` and use the dynamics network to predict ``next_latent_state`` \ |
|
``reward`` and ``next_reward_hidden_state``. |
|
Arguments: |
|
- latent_state (:obj:`torch.Tensor`): The encoding latent state of input state. |
|
- reward_hidden_state (:obj:`Tuple[torch.Tensor]`): The input hidden state of LSTM about reward. |
|
- action (:obj:`torch.Tensor`): The predicted action to rollout. |
|
Returns: |
|
- next_latent_state (:obj:`torch.Tensor`): The predicted latent state of the next timestep. |
|
- next_reward_hidden_state (:obj:`Tuple[torch.Tensor]`): The output hidden state of LSTM about reward. |
|
- reward (:obj:`torch.Tensor`): The predicted reward for input state. |
|
Shapes: |
|
- latent_state (:obj:`torch.Tensor`): :math:`(B, H)`, where B is batch_size, H is the dimension of latent state. |
|
- action (:obj:`torch.Tensor`): :math:`(B, )`, where B is batch_size. |
|
- next_latent_state (:obj:`torch.Tensor`): :math:`(B, H)`, where B is batch_size, H is the dimension of latent state. |
|
- reward (:obj:`torch.Tensor`): :math:`(B, reward_support_size)`, where B is batch_size. |
|
""" |
|
|
|
|
|
|
|
if self.discrete_action_encoding_type == 'one_hot': |
|
|
|
if len(action.shape) == 1: |
|
|
|
|
|
action = action.unsqueeze(-1) |
|
|
|
|
|
|
|
action_one_hot = torch.zeros(action.shape[0], self.action_space_size, device=action.device) |
|
|
|
action = action.long() |
|
action_one_hot.scatter_(1, action, 1) |
|
action_encoding = action_one_hot |
|
elif self.discrete_action_encoding_type == 'not_one_hot': |
|
action_encoding = action / self.action_space_size |
|
if len(action_encoding.shape) == 1: |
|
|
|
|
|
action_encoding = action_encoding.unsqueeze(-1) |
|
|
|
action_encoding = action_encoding.to(latent_state.device).float() |
|
|
|
|
|
state_action_encoding = torch.cat((latent_state, action_encoding), dim=1) |
|
|
|
next_latent_state, reward = self.dynamics_network(state_action_encoding) |
|
|
|
if not self.state_norm: |
|
return next_latent_state, reward |
|
else: |
|
next_latent_state_normalized = renormalize(next_latent_state) |
|
return next_latent_state_normalized, reward |
|
|
|
def project(self, latent_state: torch.Tensor, with_grad=True) -> torch.Tensor: |
|
""" |
|
Overview: |
|
Project the latent state to a lower dimension to calculate the self-supervised loss, which is \ |
|
proposed in EfficientZero. For more details, please refer to the paper ``Exploring Simple Siamese Representation Learning``. |
|
Arguments: |
|
- latent_state (:obj:`torch.Tensor`): The encoding latent state of input state. |
|
- with_grad (:obj:`bool`): Whether to calculate gradient for the projection result. |
|
Returns: |
|
- proj (:obj:`torch.Tensor`): The result embedding vector of projection operation. |
|
Shapes: |
|
- latent_state (:obj:`torch.Tensor`): :math:`(B, H)`, where B is batch_size, H is the dimension of latent state. |
|
- proj (:obj:`torch.Tensor`): :math:`(B, projection_output_dim)`, where B is batch_size. |
|
|
|
Examples: |
|
>>> latent_state = torch.randn(256, 64) |
|
>>> output = self.project(latent_state) |
|
>>> output.shape # (256, 1024) |
|
""" |
|
proj = self.projection(latent_state) |
|
|
|
if with_grad: |
|
|
|
return self.prediction_head(proj) |
|
else: |
|
return proj.detach() |
|
|
|
|
|
AfterstateDynamicsNetwork = DynamicsNetwork |
|
|
|
|
|
class AfterstatePredictionNetworkMLP(PredictionNetworkMLP): |
|
|
|
def __init__( |
|
self, |
|
chance_space_size, |
|
num_channels, |
|
common_layer_num: int = 2, |
|
fc_value_layers: SequenceType = [32], |
|
fc_policy_layers: SequenceType = [32], |
|
output_support_size: int = 601, |
|
last_linear_layer_init_zero: bool = True, |
|
activation: Optional[nn.Module] = nn.ReLU(inplace=True), |
|
norm_type: Optional[str] = 'BN', |
|
): |
|
""" |
|
Overview: |
|
The definition of policy and value prediction network with Multi-Layer Perceptron (MLP), \ |
|
which is used to predict value and policy by the given latent state. |
|
Arguments: |
|
- chance_space_size: (:obj:`int`): Chance space size, usually an integer number. For discrete action \ |
|
space, it is the number of discrete chance outcomes. |
|
- num_channels (:obj:`int`): The channels of latent states. |
|
- fc_value_layers (:obj:`SequenceType`): The number of hidden layers used in value head (MLP head). |
|
- fc_policy_layers (:obj:`SequenceType`): The number of hidden layers used in policy head (MLP head). |
|
- output_support_size (:obj:`int`): The size of categorical value output. |
|
- last_linear_layer_init_zero (:obj:`bool`): Whether to use zero initializations for the last layer of \ |
|
dynamics/prediction mlp, default sets it to True. |
|
- activation (:obj:`Optional[nn.Module]`): Activation function used in network, which often use in-place \ |
|
operation to speedup, e.g. ReLU(inplace=True). |
|
- norm_type (:obj:`str`): The type of normalization in networks. defaults to 'BN'. |
|
""" |
|
super(AfterstatePredictionNetworkMLP, self).__init__(chance_space_size, num_channels, common_layer_num, |
|
fc_value_layers, fc_policy_layers, output_support_size, |
|
last_linear_layer_init_zero |
|
, activation, norm_type) |
|
|