zjowowen's picture
init space
079c32c
raw
history blame
No virus
10.1 kB
from typing import Union, Optional, Dict
import torch
import torch.nn as nn
from easydict import EasyDict
from ding.utils import MODEL_REGISTRY, SequenceType, squeeze
from ..common import FCEncoder, ConvEncoder, DiscreteHead, DuelingHead, \
MultiHead, RegressionHead, ReparameterizationHead
@MODEL_REGISTRY.register('discrete_bc')
class DiscreteBC(nn.Module):
"""
Overview:
The DiscreteBC network.
Interfaces:
``__init__``, ``forward``
"""
def __init__(
self,
obs_shape: Union[int, SequenceType],
action_shape: Union[int, SequenceType],
encoder_hidden_size_list: SequenceType = [128, 128, 64],
dueling: bool = True,
head_hidden_size: Optional[int] = None,
head_layer_num: int = 1,
activation: Optional[nn.Module] = nn.ReLU(),
norm_type: Optional[str] = None,
strides: Optional[list] = None,
) -> None:
"""
Overview:
Init the DiscreteBC (encoder + head) Model according to input arguments.
Arguments:
- obs_shape (:obj:`Union[int, SequenceType]`): Observation space shape, such as 8 or [4, 84, 84].
- action_shape (:obj:`Union[int, SequenceType]`): Action space shape, such as 6 or [2, 3, 3].
- encoder_hidden_size_list (:obj:`SequenceType`): Collection of ``hidden_size`` to pass to ``Encoder``, \
the last element must match ``head_hidden_size``.
- dueling (:obj:`dueling`): Whether choose ``DuelingHead`` or ``DiscreteHead(default)``.
- head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` of head network.
- head_layer_num (:obj:`int`): The number of layers used in the head network to compute Q value output
- activation (:obj:`Optional[nn.Module]`): The type of activation function in networks \
if ``None`` then default set it to ``nn.ReLU()``.
- norm_type (:obj:`Optional[str]`): The type of normalization in networks, see \
``ding.torch_utils.fc_block`` for more details.
- strides (:obj:`Optional[list]`): The strides for each convolution layers, such as [2, 2, 2]. The length \
of this argument should be the same as ``encoder_hidden_size_list``.
"""
super(DiscreteBC, self).__init__()
# For compatibility: 1, (1, ), [4, 32, 32]
obs_shape, action_shape = squeeze(obs_shape), squeeze(action_shape)
if head_hidden_size is None:
head_hidden_size = encoder_hidden_size_list[-1]
# FC Encoder
if isinstance(obs_shape, int) or len(obs_shape) == 1:
self.encoder = FCEncoder(obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type)
# Conv Encoder
elif len(obs_shape) == 3:
if not strides:
self.encoder = ConvEncoder(
obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type
)
else:
self.encoder = ConvEncoder(
obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type, stride=strides
)
else:
raise RuntimeError(
"not support obs_shape for pre-defined encoder: {}, please customize your own BC".format(obs_shape)
)
# Head Type
if dueling:
head_cls = DuelingHead
else:
head_cls = DiscreteHead
multi_head = not isinstance(action_shape, int)
if multi_head:
self.head = MultiHead(
head_cls,
head_hidden_size,
action_shape,
layer_num=head_layer_num,
activation=activation,
norm_type=norm_type
)
else:
self.head = head_cls(
head_hidden_size, action_shape, head_layer_num, activation=activation, norm_type=norm_type
)
def forward(self, x: torch.Tensor) -> Dict:
"""
Overview:
DiscreteBC forward computation graph, input observation tensor to predict q_value.
Arguments:
- x (:obj:`torch.Tensor`): Observation inputs
Returns:
- outputs (:obj:`Dict`): DiscreteBC forward outputs, such as q_value.
ReturnsKeys:
- logit (:obj:`torch.Tensor`): Discrete Q-value output of each action dimension.
Shapes:
- x (:obj:`torch.Tensor`): :math:`(B, N)`, where B is batch size and N is ``obs_shape``
- logit (:obj:`torch.FloatTensor`): :math:`(B, M)`, where B is batch size and M is ``action_shape``
Examples:
>>> model = DiscreteBC(32, 6) # arguments: 'obs_shape' and 'action_shape'
>>> inputs = torch.randn(4, 32)
>>> outputs = model(inputs)
>>> assert isinstance(outputs, dict) and outputs['logit'].shape == torch.Size([4, 6])
"""
x = self.encoder(x)
x = self.head(x)
return x
@MODEL_REGISTRY.register('continuous_bc')
class ContinuousBC(nn.Module):
"""
Overview:
The ContinuousBC network.
Interfaces:
``__init__``, ``forward``
"""
def __init__(
self,
obs_shape: Union[int, SequenceType],
action_shape: Union[int, SequenceType, EasyDict],
action_space: str,
actor_head_hidden_size: int = 64,
actor_head_layer_num: int = 1,
activation: Optional[nn.Module] = nn.ReLU(),
norm_type: Optional[str] = None,
) -> None:
"""
Overview:
Initialize the ContinuousBC Model according to input arguments.
Arguments:
- obs_shape (:obj:`Union[int, SequenceType]`): Observation's shape, such as 128, (156, ).
- action_shape (:obj:`Union[int, SequenceType, EasyDict]`): Action's shape, such as 4, (3, ), \
EasyDict({'action_type_shape': 3, 'action_args_shape': 4}).
- action_space (:obj:`str`): The type of action space, \
including [``regression``, ``reparameterization``].
- actor_head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` to pass to actor head.
- actor_head_layer_num (:obj:`int`): The num of layers used in the network to compute Q value output \
for actor head.
- activation (:obj:`Optional[nn.Module]`): The type of activation function to use in ``MLP`` \
after each FC layer, if ``None`` then default set to ``nn.ReLU()``.
- norm_type (:obj:`Optional[str]`): The type of normalization to after network layer (FC, Conv), \
see ``ding.torch_utils.network`` for more details.
"""
super(ContinuousBC, self).__init__()
obs_shape: int = squeeze(obs_shape)
action_shape = squeeze(action_shape)
self.action_shape = action_shape
self.action_space = action_space
assert self.action_space in ['regression', 'reparameterization']
if self.action_space == 'regression':
self.actor = nn.Sequential(
nn.Linear(obs_shape, actor_head_hidden_size), activation,
RegressionHead(
actor_head_hidden_size,
action_shape,
actor_head_layer_num,
final_tanh=True,
activation=activation,
norm_type=norm_type
)
)
elif self.action_space == 'reparameterization':
self.actor = nn.Sequential(
nn.Linear(obs_shape, actor_head_hidden_size), activation,
ReparameterizationHead(
actor_head_hidden_size,
action_shape,
actor_head_layer_num,
sigma_type='conditioned',
activation=activation,
norm_type=norm_type
)
)
def forward(self, inputs: Union[torch.Tensor, Dict[str, torch.Tensor]]) -> Dict:
"""
Overview:
The unique execution (forward) method of ContinuousBC.
Arguments:
- inputs (:obj:`torch.Tensor`): Observation data, defaults to tensor.
Returns:
- output (:obj:`Dict`): Output dict data, including different key-values among distinct action_space.
ReturnsKeys:
- action (:obj:`torch.Tensor`): action output of actor network, \
with shape :math:`(B, action_shape)`.
- logit (:obj:`List[torch.Tensor]`): reparameterized action output of actor network, \
with shape :math:`(B, action_shape)`.
Shapes:
- inputs (:obj:`torch.Tensor`): :math:`(B, N)`, where B is batch size and N is ``obs_shape``
- action (:obj:`torch.FloatTensor`): :math:`(B, M)`, where B is batch size and M is ``action_shape``
- logit (:obj:`List[torch.FloatTensor]`): :math:`(B, M)`, where B is batch size and M is ``action_shape``
Examples (Regression):
>>> model = ContinuousBC(32, 6, action_space='regression')
>>> inputs = torch.randn(4, 32)
>>> outputs = model(inputs)
>>> assert isinstance(outputs, dict) and outputs['action'].shape == torch.Size([4, 6])
Examples (Reparameterization):
>>> model = ContinuousBC(32, 6, action_space='reparameterization')
>>> inputs = torch.randn(4, 32)
>>> outputs = model(inputs)
>>> assert isinstance(outputs, dict) and outputs['logit'][0].shape == torch.Size([4, 6])
>>> assert outputs['logit'][1].shape == torch.Size([4, 6])
"""
if self.action_space == 'regression':
x = self.actor(inputs)
return {'action': x['pred']}
elif self.action_space == 'reparameterization':
x = self.actor(inputs)
return {'logit': [x['mu'], x['sigma']]}