zjowowen's picture
init space
079c32c
raw
history blame
No virus
25 kB
from typing import Union, Dict, Optional
from easydict import EasyDict
import torch
import torch.nn as nn
from ding.utils import SequenceType, squeeze, MODEL_REGISTRY
from ..common import RegressionHead, ReparameterizationHead, DiscreteHead, MultiHead, \
FCEncoder, ConvEncoder
@MODEL_REGISTRY.register('discrete_maqac')
class DiscreteMAQAC(nn.Module):
"""
Overview:
The neural network and computation graph of algorithms related to discrete action Multi-Agent Q-value \
Actor-CritiC (MAQAC) model. The model is composed of actor and critic, where actor is a MLP network and \
critic is a MLP network. The actor network is used to predict the action probability distribution, and the \
critic network is used to predict the Q value of the state-action pair.
Interfaces:
``__init__``, ``forward``, ``compute_actor``, ``compute_critic``
"""
mode = ['compute_actor', 'compute_critic']
def __init__(
self,
agent_obs_shape: Union[int, SequenceType],
global_obs_shape: Union[int, SequenceType],
action_shape: Union[int, SequenceType],
twin_critic: bool = False,
actor_head_hidden_size: int = 64,
actor_head_layer_num: int = 1,
critic_head_hidden_size: int = 64,
critic_head_layer_num: int = 1,
activation: Optional[nn.Module] = nn.ReLU(),
norm_type: Optional[str] = None,
) -> None:
"""
Overview:
Initialize the DiscreteMAQAC Model according to arguments.
Arguments:
- agent_obs_shape (:obj:`Union[int, SequenceType]`): Agent's observation's space.
- global_obs_shape (:obj:`Union[int, SequenceType]`): Global observation's space.
- obs_shape (:obj:`Union[int, SequenceType]`): Observation's space.
- action_shape (:obj:`Union[int, SequenceType]`): Action's space.
- twin_critic (:obj:`bool`): Whether include twin critic.
- actor_head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` to pass to actor-nn's ``Head``.
- actor_head_layer_num (:obj:`int`): The num of layers used in the network to compute Q value output \
for actor's nn.
- critic_head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` to pass to critic-nn's ``Head``.
- critic_head_layer_num (:obj:`int`): The num of layers used in the network to compute Q value output \
for critic's nn.
- activation (:obj:`Optional[nn.Module]`): The type of activation function to use in ``MLP`` the after \
``layer_fn``, if ``None`` then default set to ``nn.ReLU()``
- norm_type (:obj:`Optional[str]`): The type of normalization to use, see ``ding.torch_utils.fc_block`` \
for more details.
"""
super(DiscreteMAQAC, self).__init__()
agent_obs_shape: int = squeeze(agent_obs_shape)
action_shape: int = squeeze(action_shape)
self.actor = nn.Sequential(
nn.Linear(agent_obs_shape, actor_head_hidden_size), activation,
DiscreteHead(
actor_head_hidden_size, action_shape, actor_head_layer_num, activation=activation, norm_type=norm_type
)
)
self.twin_critic = twin_critic
if self.twin_critic:
self.critic = nn.ModuleList()
for _ in range(2):
self.critic.append(
nn.Sequential(
nn.Linear(global_obs_shape, critic_head_hidden_size), activation,
DiscreteHead(
critic_head_hidden_size,
action_shape,
critic_head_layer_num,
activation=activation,
norm_type=norm_type
)
)
)
else:
self.critic = nn.Sequential(
nn.Linear(global_obs_shape, critic_head_hidden_size), activation,
DiscreteHead(
critic_head_hidden_size,
action_shape,
critic_head_layer_num,
activation=activation,
norm_type=norm_type
)
)
def forward(self, inputs: Union[torch.Tensor, Dict], mode: str) -> Dict:
"""
Overview:
Use observation tensor to predict output, with ``compute_actor`` or ``compute_critic`` mode.
Arguments:
- inputs (:obj:`Dict[str, torch.Tensor]`): The input dict tensor data, has keys:
- ``obs`` (:obj:`Dict[str, torch.Tensor]`): The input dict tensor data, has keys:
- ``agent_state`` (:obj:`torch.Tensor`): The agent's observation tensor data, \
with shape :math:`(B, A, N0)`, where B is batch size and A is agent num. \
N0 corresponds to ``agent_obs_shape``.
- ``global_state`` (:obj:`torch.Tensor`): The global observation tensor data, \
with shape :math:`(B, A, N1)`, where B is batch size and A is agent num. \
N1 corresponds to ``global_obs_shape``.
- ``action_mask`` (:obj:`torch.Tensor`): The action mask tensor data, \
with shape :math:`(B, A, N2)`, where B is batch size and A is agent num. \
N2 corresponds to ``action_shape``.
- mode (:obj:`str`): The forward mode, all the modes are defined in the beginning of this class.
Returns:
- output (:obj:`Dict[str, torch.Tensor]`): The output dict of DiscreteMAQAC forward computation graph, \
whose key-values vary in different forward modes.
Examples:
>>> B = 32
>>> agent_obs_shape = 216
>>> global_obs_shape = 264
>>> agent_num = 8
>>> action_shape = 14
>>> data = {
>>> 'obs': {
>>> 'agent_state': torch.randn(B, agent_num, agent_obs_shape),
>>> 'global_state': torch.randn(B, agent_num, global_obs_shape),
>>> 'action_mask': torch.randint(0, 2, size=(B, agent_num, action_shape))
>>> }
>>> }
>>> model = DiscreteMAQAC(agent_obs_shape, global_obs_shape, action_shape, twin_critic=True)
>>> logit = model(data, mode='compute_actor')['logit']
>>> value = model(data, mode='compute_critic')['q_value']
"""
assert mode in self.mode, "not support forward mode: {}/{}".format(mode, self.mode)
return getattr(self, mode)(inputs)
def compute_actor(self, inputs: Dict) -> Dict:
"""
Overview:
Use observation tensor to predict action logits.
Arguments:
- inputs (:obj:`Dict[str, torch.Tensor]`): The input dict tensor data, has keys:
- ``obs`` (:obj:`Dict[str, torch.Tensor]`): The input dict tensor data, has keys:
- ``agent_state`` (:obj:`torch.Tensor`): The agent's observation tensor data, \
with shape :math:`(B, A, N0)`, where B is batch size and A is agent num. \
N0 corresponds to ``agent_obs_shape``.
- ``global_state`` (:obj:`torch.Tensor`): The global observation tensor data, \
with shape :math:`(B, A, N1)`, where B is batch size and A is agent num. \
N1 corresponds to ``global_obs_shape``.
- ``action_mask`` (:obj:`torch.Tensor`): The action mask tensor data, \
with shape :math:`(B, A, N2)`, where B is batch size and A is agent num. \
N2 corresponds to ``action_shape``.
Returns:
- output (:obj:`Dict[str, torch.Tensor]`): The output dict of DiscreteMAQAC forward computation graph, \
whose key-values vary in different forward modes.
- logit (:obj:`torch.Tensor`): Action's output logit (real value range), whose shape is \
:math:`(B, A, N2)`, where N2 corresponds to ``action_shape``.
- action_mask (:obj:`torch.Tensor`): Action mask tensor with same size as ``action_shape``.
Examples:
>>> B = 32
>>> agent_obs_shape = 216
>>> global_obs_shape = 264
>>> agent_num = 8
>>> action_shape = 14
>>> data = {
>>> 'obs': {
>>> 'agent_state': torch.randn(B, agent_num, agent_obs_shape),
>>> 'global_state': torch.randn(B, agent_num, global_obs_shape),
>>> 'action_mask': torch.randint(0, 2, size=(B, agent_num, action_shape))
>>> }
>>> }
>>> model = DiscreteMAQAC(agent_obs_shape, global_obs_shape, action_shape, twin_critic=True)
>>> logit = model.compute_actor(data)['logit']
"""
action_mask = inputs['obs']['action_mask']
x = self.actor(inputs['obs']['agent_state'])
return {'logit': x['logit'], 'action_mask': action_mask}
def compute_critic(self, inputs: Dict) -> Dict:
"""
Overview:
use observation tensor to predict Q value.
Arguments:
- inputs (:obj:`Dict[str, torch.Tensor]`): The input dict tensor data, has keys:
- ``obs`` (:obj:`Dict[str, torch.Tensor]`): The input dict tensor data, has keys:
- ``agent_state`` (:obj:`torch.Tensor`): The agent's observation tensor data, \
with shape :math:`(B, A, N0)`, where B is batch size and A is agent num. \
N0 corresponds to ``agent_obs_shape``.
- ``global_state`` (:obj:`torch.Tensor`): The global observation tensor data, \
with shape :math:`(B, A, N1)`, where B is batch size and A is agent num. \
N1 corresponds to ``global_obs_shape``.
- ``action_mask`` (:obj:`torch.Tensor`): The action mask tensor data, \
with shape :math:`(B, A, N2)`, where B is batch size and A is agent num. \
N2 corresponds to ``action_shape``.
Returns:
- output (:obj:`Dict[str, torch.Tensor]`): The output dict of DiscreteMAQAC forward computation graph, \
whose key-values vary in different values of ``twin_critic``.
- q_value (:obj:`list`): If ``twin_critic=True``, q_value should be 2 elements, each is the shape of \
:math:`(B, A, N2)`, where B is batch size and A is agent num. N2 corresponds to ``action_shape``. \
Otherwise, q_value should be ``torch.Tensor``.
Examples:
>>> B = 32
>>> agent_obs_shape = 216
>>> global_obs_shape = 264
>>> agent_num = 8
>>> action_shape = 14
>>> data = {
>>> 'obs': {
>>> 'agent_state': torch.randn(B, agent_num, agent_obs_shape),
>>> 'global_state': torch.randn(B, agent_num, global_obs_shape),
>>> 'action_mask': torch.randint(0, 2, size=(B, agent_num, action_shape))
>>> }
>>> }
>>> model = DiscreteMAQAC(agent_obs_shape, global_obs_shape, action_shape, twin_critic=True)
>>> value = model.compute_critic(data)['q_value']
"""
if self.twin_critic:
x = [m(inputs['obs']['global_state'])['logit'] for m in self.critic]
else:
x = self.critic(inputs['obs']['global_state'])['logit']
return {'q_value': x}
@MODEL_REGISTRY.register('continuous_maqac')
class ContinuousMAQAC(nn.Module):
"""
Overview:
The neural network and computation graph of algorithms related to continuous action Multi-Agent Q-value \
Actor-CritiC (MAQAC) model. The model is composed of actor and critic, where actor is a MLP network and \
critic is a MLP network. The actor network is used to predict the action probability distribution, and the \
critic network is used to predict the Q value of the state-action pair.
Interfaces:
``__init__``, ``forward``, ``compute_actor``, ``compute_critic``
"""
mode = ['compute_actor', 'compute_critic']
def __init__(
self,
agent_obs_shape: Union[int, SequenceType],
global_obs_shape: Union[int, SequenceType],
action_shape: Union[int, SequenceType, EasyDict],
action_space: str,
twin_critic: bool = False,
actor_head_hidden_size: int = 64,
actor_head_layer_num: int = 1,
critic_head_hidden_size: int = 64,
critic_head_layer_num: int = 1,
activation: Optional[nn.Module] = nn.ReLU(),
norm_type: Optional[str] = None,
) -> None:
"""
Overview:
Initialize the QAC Model according to arguments.
Arguments:
- obs_shape (:obj:`Union[int, SequenceType]`): Observation's space.
- action_shape (:obj:`Union[int, SequenceType, EasyDict]`): Action's space, such as 4, (3, )
- action_space (:obj:`str`): Whether choose ``regression`` or ``reparameterization``.
- twin_critic (:obj:`bool`): Whether include twin critic.
- actor_head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` to pass to actor-nn's ``Head``.
- actor_head_layer_num (:obj:`int`): The num of layers used in the network to compute Q value output \
for actor's nn.
- critic_head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` to pass to critic-nn's ``Head``.
- critic_head_layer_num (:obj:`int`): The num of layers used in the network to compute Q value output \
for critic's nn.
- activation (:obj:`Optional[nn.Module]`): The type of activation function to use in ``MLP`` the after \
``layer_fn``, if ``None`` then default set to ``nn.ReLU()``
- norm_type (:obj:`Optional[str]`): The type of normalization to use, see ``ding.torch_utils.fc_block`` \
for more details.
"""
super(ContinuousMAQAC, self).__init__()
obs_shape: int = squeeze(agent_obs_shape)
global_obs_shape: int = squeeze(global_obs_shape)
action_shape = squeeze(action_shape)
self.action_shape = action_shape
self.action_space = action_space
assert self.action_space in ['regression', 'reparameterization'], self.action_space
if self.action_space == 'regression': # DDPG, TD3
self.actor = nn.Sequential(
nn.Linear(obs_shape, actor_head_hidden_size), activation,
RegressionHead(
actor_head_hidden_size,
action_shape,
actor_head_layer_num,
final_tanh=True,
activation=activation,
norm_type=norm_type
)
)
else: # SAC
self.actor = nn.Sequential(
nn.Linear(obs_shape, actor_head_hidden_size), activation,
ReparameterizationHead(
actor_head_hidden_size,
action_shape,
actor_head_layer_num,
sigma_type='conditioned',
activation=activation,
norm_type=norm_type
)
)
self.twin_critic = twin_critic
critic_input_size = global_obs_shape + action_shape
if self.twin_critic:
self.critic = nn.ModuleList()
for _ in range(2):
self.critic.append(
nn.Sequential(
nn.Linear(critic_input_size, critic_head_hidden_size), activation,
RegressionHead(
critic_head_hidden_size,
1,
critic_head_layer_num,
final_tanh=False,
activation=activation,
norm_type=norm_type
)
)
)
else:
self.critic = nn.Sequential(
nn.Linear(critic_input_size, critic_head_hidden_size), activation,
RegressionHead(
critic_head_hidden_size,
1,
critic_head_layer_num,
final_tanh=False,
activation=activation,
norm_type=norm_type
)
)
def forward(self, inputs: Union[torch.Tensor, Dict], mode: str) -> Dict:
"""
Overview:
Use observation and action tensor to predict output in ``compute_actor`` or ``compute_critic`` mode.
Arguments:
- inputs (:obj:`Dict[str, torch.Tensor]`): The input dict tensor data, has keys:
- ``obs`` (:obj:`Dict[str, torch.Tensor]`): The input dict tensor data, has keys:
- ``agent_state`` (:obj:`torch.Tensor`): The agent's observation tensor data, \
with shape :math:`(B, A, N0)`, where B is batch size and A is agent num. \
N0 corresponds to ``agent_obs_shape``.
- ``global_state`` (:obj:`torch.Tensor`): The global observation tensor data, \
with shape :math:`(B, A, N1)`, where B is batch size and A is agent num. \
N1 corresponds to ``global_obs_shape``.
- ``action_mask`` (:obj:`torch.Tensor`): The action mask tensor data, \
with shape :math:`(B, A, N2)`, where B is batch size and A is agent num. \
N2 corresponds to ``action_shape``.
- ``action`` (:obj:`torch.Tensor`): The action tensor data, \
with shape :math:`(B, A, N3)`, where B is batch size and A is agent num. \
N3 corresponds to ``action_shape``.
- mode (:obj:`str`): Name of the forward mode.
Returns:
- outputs (:obj:`Dict`): Outputs of network forward, whose key-values will be different for different \
``mode``, ``twin_critic``, ``action_space``.
Examples:
>>> B = 32
>>> agent_obs_shape = 216
>>> global_obs_shape = 264
>>> agent_num = 8
>>> action_shape = 14
>>> act_space = 'reparameterization' # regression
>>> data = {
>>> 'obs': {
>>> 'agent_state': torch.randn(B, agent_num, agent_obs_shape),
>>> 'global_state': torch.randn(B, agent_num, global_obs_shape),
>>> 'action_mask': torch.randint(0, 2, size=(B, agent_num, action_shape))
>>> },
>>> 'action': torch.randn(B, agent_num, squeeze(action_shape))
>>> }
>>> model = ContinuousMAQAC(agent_obs_shape, global_obs_shape, action_shape, act_space, twin_critic=False)
>>> if action_space == 'regression':
>>> action = model(data['obs'], mode='compute_actor')['action']
>>> elif action_space == 'reparameterization':
>>> (mu, sigma) = model(data['obs'], mode='compute_actor')['logit']
>>> value = model(data, mode='compute_critic')['q_value']
"""
assert mode in self.mode, "not support forward mode: {}/{}".format(mode, self.mode)
return getattr(self, mode)(inputs)
def compute_actor(self, inputs: Dict) -> Dict:
"""
Overview:
Use observation tensor to predict action logits.
Arguments:
- inputs (:obj:`Dict[str, torch.Tensor]`): The input dict tensor data, has keys:
- ``agent_state`` (:obj:`torch.Tensor`): The agent's observation tensor data, \
with shape :math:`(B, A, N0)`, where B is batch size and A is agent num. \
N0 corresponds to ``agent_obs_shape``.
Returns:
- outputs (:obj:`Dict`): Outputs of network forward.
ReturnKeys (``action_space == 'regression'``):
- action (:obj:`torch.Tensor`): Action tensor with same size as ``action_shape``.
ReturnKeys (``action_space == 'reparameterization'``):
- logit (:obj:`list`): 2 elements, each is the shape of :math:`(B, A, N3)`, where B is batch size and \
A is agent num. N3 corresponds to ``action_shape``.
Examples:
>>> B = 32
>>> agent_obs_shape = 216
>>> global_obs_shape = 264
>>> agent_num = 8
>>> action_shape = 14
>>> act_space = 'reparameterization' # 'regression'
>>> data = {
>>> 'agent_state': torch.randn(B, agent_num, agent_obs_shape),
>>> }
>>> model = ContinuousMAQAC(agent_obs_shape, global_obs_shape, action_shape, act_space, twin_critic=False)
>>> if action_space == 'regression':
>>> action = model.compute_actor(data)['action']
>>> elif action_space == 'reparameterization':
>>> (mu, sigma) = model.compute_actor(data)['logit']
"""
inputs = inputs['agent_state']
if self.action_space == 'regression':
x = self.actor(inputs)
return {'action': x['pred']}
else:
x = self.actor(inputs)
return {'logit': [x['mu'], x['sigma']]}
def compute_critic(self, inputs: Dict) -> Dict:
"""
Overview:
Use observation tensor and action tensor to predict Q value.
Arguments:
- inputs (:obj:`Dict[str, torch.Tensor]`): The input dict tensor data, has keys:
- ``obs`` (:obj:`Dict[str, torch.Tensor]`): The input dict tensor data, has keys:
- ``agent_state`` (:obj:`torch.Tensor`): The agent's observation tensor data, \
with shape :math:`(B, A, N0)`, where B is batch size and A is agent num. \
N0 corresponds to ``agent_obs_shape``.
- ``global_state`` (:obj:`torch.Tensor`): The global observation tensor data, \
with shape :math:`(B, A, N1)`, where B is batch size and A is agent num. \
N1 corresponds to ``global_obs_shape``.
- ``action_mask`` (:obj:`torch.Tensor`): The action mask tensor data, \
with shape :math:`(B, A, N2)`, where B is batch size and A is agent num. \
N2 corresponds to ``action_shape``.
- ``action`` (:obj:`torch.Tensor`): The action tensor data, \
with shape :math:`(B, A, N3)`, where B is batch size and A is agent num. \
N3 corresponds to ``action_shape``.
Returns:
- outputs (:obj:`Dict`): Outputs of network forward.
ReturnKeys (``twin_critic=True``):
- q_value (:obj:`list`): 2 elements, each is the shape of :math:`(B, A)`, where B is batch size and \
A is agent num.
ReturnKeys (``twin_critic=False``):
- q_value (:obj:`torch.Tensor`): :math:`(B, A)`, where B is batch size and A is agent num.
Examples:
>>> B = 32
>>> agent_obs_shape = 216
>>> global_obs_shape = 264
>>> agent_num = 8
>>> action_shape = 14
>>> act_space = 'reparameterization' # 'regression'
>>> data = {
>>> 'obs': {
>>> 'agent_state': torch.randn(B, agent_num, agent_obs_shape),
>>> 'global_state': torch.randn(B, agent_num, global_obs_shape),
>>> 'action_mask': torch.randint(0, 2, size=(B, agent_num, action_shape))
>>> },
>>> 'action': torch.randn(B, agent_num, squeeze(action_shape))
>>> }
>>> model = ContinuousMAQAC(agent_obs_shape, global_obs_shape, action_shape, act_space, twin_critic=False)
>>> value = model.compute_critic(data)['q_value']
"""
obs, action = inputs['obs']['global_state'], inputs['action']
if len(action.shape) == 1: # (B, ) -> (B, 1)
action = action.unsqueeze(1)
x = torch.cat([obs, action], dim=-1)
if self.twin_critic:
x = [m(x)['pred'] for m in self.critic]
else:
x = self.critic(x)['pred']
return {'q_value': x}