File size: 10,819 Bytes
91ef820
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import argparse
import numpy as np
import torch

# import datasets
import utils.misc as misc
from utils.box_utils import xywh2xyxy
from utils.visual_bbox import visualBBox
from models import build_model
import transforms as T
import PIL.Image as Image
import data_loader
from transformers import AutoTokenizer


def get_args_parser():
    parser = argparse.ArgumentParser('Set transformer detector', add_help=False)

    # Input config
    # parser.add_argument('--image', type=str, default='xxx', help="input X-ray image.")
    # parser.add_argument('--phrase', type=str, default='xxx', help="input phrase.")
    # parser.add_argument('--bbox', type=str, default='xxx', help="alternative, if you want to show ground-truth bbox")

    # fool
    parser.add_argument('--lr', default=1e-4, type=float)
    parser.add_argument('--lr_bert', default=0., type=float)
    parser.add_argument('--lr_visu_cnn', default=0., type=float)
    parser.add_argument('--lr_visu_tra', default=1e-5, type=float)
    parser.add_argument('--batch_size', default=32, type=int)
    parser.add_argument('--weight_decay', default=1e-4, type=float)
    parser.add_argument('--epochs', default=100, type=int)
    parser.add_argument('--lr_power', default=0.9, type=float, help='lr poly power')
    parser.add_argument('--clip_max_norm', default=0., type=float,
                        help='gradient clipping max norm')
    parser.add_argument('--eval', dest='eval', default=False, action='store_true', help='if evaluation only')
    parser.add_argument('--optimizer', default='rmsprop', type=str)
    parser.add_argument('--lr_scheduler', default='poly', type=str)
    parser.add_argument('--lr_drop', default=80, type=int)
    # Model parameters
    parser.add_argument('--model_name', type=str, default='TransVG_ca',
                        help="Name of model to be exploited.")


    # Transformers in two branches
    parser.add_argument('--bert_enc_num', default=12, type=int)
    parser.add_argument('--detr_enc_num', default=6, type=int)

    # DETR parameters
    # * Backbone
    parser.add_argument('--backbone', default='resnet50', type=str,
                        help="Name of the convolutional backbone to use")
    parser.add_argument('--dilation', action='store_true',
                        help="If true, we replace stride with dilation in the last convolutional block (DC5)")
    parser.add_argument('--position_embedding', default='sine', type=str, choices=('sine', 'learned'), help="Type of positional embedding to use on top of the image features")
    # * Transformer
    parser.add_argument('--enc_layers', default=6, type=int,
                        help="Number of encoding layers in the transformer")
    parser.add_argument('--dec_layers', default=0, type=int,
                        help="Number of decoding layers in the transformer")
    parser.add_argument('--dim_feedforward', default=2048, type=int,
                        help="Intermediate size of the feedforward layers in the transformer blocks")
    parser.add_argument('--hidden_dim', default=256, type=int,
                        help="Size of the embeddings (dimension of the transformer)")
    parser.add_argument('--dropout', default=0.1, type=float,
                        help="Dropout applied in the transformer")
    parser.add_argument('--nheads', default=8, type=int,
                        help="Number of attention heads inside the transformer's attentions")
    parser.add_argument('--num_queries', default=100, type=int,
                        help="Number of query slots")
    parser.add_argument('--pre_norm', action='store_true')

    parser.add_argument('--imsize', default=640, type=int, help='image size')
    parser.add_argument('--emb_size', default=512, type=int,
                        help='fusion module embedding dimensions')
    # Vision-Language Transformer
    parser.add_argument('--use_vl_type_embed', action='store_true',
                        help="If true, use vl_type embedding")
    parser.add_argument('--vl_dropout', default=0.1, type=float,
                        help="Dropout applied in the vision-language transformer")
    parser.add_argument('--vl_nheads', default=8, type=int,
                        help="Number of attention heads inside the vision-language transformer's attentions")
    parser.add_argument('--vl_hidden_dim', default=256, type=int,
                        help='Size of the embeddings (dimension of the vision-language transformer)')
    parser.add_argument('--vl_dim_feedforward', default=2048, type=int,
                        help="Intermediate size of the feedforward layers in the vision-language transformer blocks")
    parser.add_argument('--vl_enc_layers', default=6, type=int,
                        help='Number of encoders in the vision-language transformer')

    # Dataset parameters
    # parser.add_argument('--data_root', type=str, default='./ln_data/',
    #                     help='path to ReferIt splits data folder')
    # parser.add_argument('--split_root', type=str, default='data',
    #                     help='location of pre-parsed dataset info')
    parser.add_argument('--dataset', default='MS_CXR', type=str,
                        help='referit/flickr/unc/unc+/gref')
    parser.add_argument('--max_query_len', default=20, type=int,
                        help='maximum time steps (lang length) per batch')
    
    # dataset parameters
    parser.add_argument('--output_dir', default='outputs',
                        help='path where to save, empty for no saving')
    parser.add_argument('--device', default='cuda',
                        help='device to use for training / testing')
    # parser.add_argument('--seed', default=13, type=int)
    # parser.add_argument('--resume', default='', help='resume from checkpoint')
    parser.add_argument('--detr_model', default='./saved_models/detr-r50.pth', type=str, help='detr model')
    parser.add_argument('--bert_model', default='bert-base-uncased', type=str, help='bert model')
    # parser.add_argument('--light', dest='light', default=False, action='store_true', help='if use smaller model')
    # parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
    #                     help='start epoch')
    # parser.add_argument('--num_workers', default=2, type=int)

    # distributed training parameters
    # parser.add_argument('--world_size', default=1, type=int,
    #                     help='number of distributed processes')
    # parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')

    # evalutaion options
    # parser.add_argument('--eval_set', default='test', type=str)
    parser.add_argument('--eval_model', default='checkpoint/best_miou_checkpoint.pth', type=str)

    # visualization options
    # parser.add_argument('--visualization', action='store_true',
    #                     help="If true, visual the bbox")
    # parser.add_argument('--visual_MHA', action='store_true',
    #                     help="If true, visual the attention maps")

    return parser

def make_transforms(imsize):
    return T.Compose([
            T.RandomResize([imsize]),
            T.ToTensor(),
            T.NormalizeAndPad(size=imsize),
        ])

def main(args):

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    image_size = 640 # hyper parameters

    ## build data
    # case1
    img_path = "data/649af982-e3af4e3a-75013d30-cdc71514-a34738fd.jpg"
    phrase = 'Small left apical pneumothorax'
    bbox = [332, 28, 141, 48]  # xywh
    # # case2
    # img_path = 'files/p10/p10977201/s59062881/00363400-cee06fa7-8c2ca1f7-2678a170-b3a62a6e.jpg'
    # phrase = 'small apical pneumothorax'
    # bbox = [161, 134, 111, 37]
    # # case3
    # img_path = 'files/p18/p18426683/s59612243/95423e8e-45dff550-563d3eba-b8bc94be-a87f5a1d.jpg'
    # phrase = 'cardiac silhouette enlarged'
    # bbox = [196, 312, 371, 231]
    # # case4
    # img_path = 'files/p10/p10048451/s53489305/4b7f7a4c-18c39245-53724c25-06878595-7e41bb94.jpg'
    # phrase = 'Focal opacity in the lingular lobe'
    # bbox = [467, 373, 131, 189]
    # # case5
    # img_path = 'files/p19/p19757720/s59572378/13255e1f-91b7b172-02baaeee-340ec493-0e531681.jpg'
    # phrase = 'multisegmental right upper lobe consolidation is present'
    # bbox = [9, 86, 232, 278]
    # # case6
    # img_path = 'files/p10/p10469621/s56786891/04e10148-c36f7afb-d0aaf964-152d8a5d-a02ab550.jpg'
    # phrase = 'right middle lobe opacity, suspicious for pneumonia in the proper clinical setting'
    # bbox = [108, 405, 162, 83]
    # # case7
    # img_path = 'files/p10/p10670818/s50191454/1176839d-cf4f677f-d597a1ef-548bc32a-c05429f3.jpg'
    # phrase = 'Newly appeared lingular opacity'
    # bbox = [392, 297, 141, 151]

    bbox = bbox[:2] + [bbox[0]+bbox[2], bbox[1]+bbox[3]] # xywh2xyxy

    ## encode phrase to bert input
    examples = data_loader.read_examples(phrase, 1)
    tokenizer = AutoTokenizer.from_pretrained(args.bert_model, do_lower_case=True)
    features = data_loader.convert_examples_to_features(
        examples=examples, seq_length=args.max_query_len, tokenizer=tokenizer, usemarker=None)
    word_id = torch.tensor(features[0].input_ids)  #
    word_mask = torch.tensor(features[0].input_mask)  #

    ## read and transform image
    input_dict = dict()
    img = Image.open(img_path).convert("RGB")
    input_dict['img'] = img
    fake_bbox = torch.tensor(np.array([0,0,0,0], dtype=int)).float() #for avoid bug
    input_dict['box'] = fake_bbox #for avoid bug
    input_dict['text'] = phrase
    transform = make_transforms(imsize=image_size)
    input_dict = transform(input_dict)
    img = input_dict['img']  #
    img_mask = input_dict['mask']  #
    # if bbox is not None:
    #     bbox = input_dict['box']  #

    img_data = misc.NestedTensor(img.unsqueeze(0), img_mask.unsqueeze(0))
    text_data = misc.NestedTensor(word_id.unsqueeze(0), word_mask.unsqueeze(0))

    ## build model
    model = build_model(args)
    model.to(device)
    checkpoint = torch.load(args.eval_model, map_location='cpu')
    model.load_state_dict(checkpoint['model'])

    ## model infer
    img_data = img_data.to(device)
    text_data = text_data.to(device)
    model.eval()
    with torch.no_grad():
        outputs = model(img_data, text_data)
        pred_box = outputs['pred_box']
        pred_box = xywh2xyxy(pred_box.detach().cpu())*image_size
        pred_box = pred_box.numpy()[0]
        pred_box = [round(pred_box[0]), round(pred_box[1]), round(pred_box[2]), round(pred_box[3])]
        visualBBox(img_path, pred_box, bbox)
        


if __name__ == '__main__':
    parser = argparse.ArgumentParser('TransVG evaluation script', parents=[get_args_parser()])
    args = parser.parse_args()
    main(args)