Edit model card

Details: https://spacy.io/models/zh#zh_core_web_trf

Chinese transformer pipeline (Transformer(name='bert-base-chinese', piece_encoder='bert-wordpiece', stride=152, type='bert', width=768, window=208, vocab_size=21128)). Components: transformer, tagger, parser, ner, attribute_ruler.

Feature Description
Name zh_core_web_trf
Version 3.7.2
spaCy >=3.7.0,<3.8.0
Default Pipeline transformer, tagger, parser, attribute_ruler, ner
Components transformer, tagger, parser, attribute_ruler, ner
Vectors 0 keys, 0 unique vectors (0 dimensions)
Sources OntoNotes 5 (Ralph Weischedel, Martha Palmer, Mitchell Marcus, Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle Franchini, Mohammed El-Bachouti, Robert Belvin, Ann Houston)
CoreNLP Universal Dependencies Converter (Stanford NLP Group)
bert-base-chinese (Hugging Face)
License MIT
Author Explosion

Label Scheme

View label scheme (99 labels for 3 components)
Component Labels
tagger AD, AS, BA, CC, CD, CS, DEC, DEG, DER, DEV, DT, ETC, FW, IJ, INF, JJ, LB, LC, M, MSP, NN, NR, NT, OD, ON, P, PN, PU, SB, SP, URL, VA, VC, VE, VV, X
parser ROOT, acl, advcl:loc, advmod, advmod:dvp, advmod:loc, advmod:rcomp, amod, amod:ordmod, appos, aux:asp, aux:ba, aux:modal, aux:prtmod, auxpass, case, cc, ccomp, compound:nn, compound:vc, conj, cop, dep, det, discourse, dobj, etc, mark, mark:clf, name, neg, nmod, nmod:assmod, nmod:poss, nmod:prep, nmod:range, nmod:tmod, nmod:topic, nsubj, nsubj:xsubj, nsubjpass, nummod, parataxis:prnmod, punct, xcomp
ner CARDINAL, DATE, EVENT, FAC, GPE, LANGUAGE, LAW, LOC, MONEY, NORP, ORDINAL, ORG, PERCENT, PERSON, PRODUCT, QUANTITY, TIME, WORK_OF_ART

Accuracy

Type Score
TOKEN_ACC 95.85
TOKEN_P 94.58
TOKEN_R 91.36
TOKEN_F 92.94
TAG_ACC 91.75
SENTS_P 70.92
SENTS_R 67.57
SENTS_F 69.21
DEP_UAS 75.72
DEP_LAS 71.45
ENTS_P 76.09
ENTS_R 72.18
ENTS_F 74.08
Downloads last month
29
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results