File size: 3,688 Bytes
b2b0ecb
 
 
 
 
 
 
 
 
b04d79a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2b0ecb
 
 
 
 
 
 
41a1b5b
b2b0ecb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b04d79a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: alz-mri-vit
  results:
  - task:
      name: image-classification
      type: image-classification
    dataset:
      name: Falah/Alzheimer_MRI
      type: Falah/Alzheimer_MRI
      config: default
      split: train
      args: default
    metrics:
    - name: f1
      type: f1
      value: 0.930865
datasets:
- Falah/Alzheimer_MRI
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# alz-mri-vit

This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on Falah/Alzheimer_MRI dataset (fine-tuning procedure is described [here](https://huggingface.co/spolivin/alz-mri-vit/blob/main/vit_finetuning.ipynb)).
It achieves the following results on the evaluation set:
- Loss: 0.1875
- F1: 0.9309

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 30
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.1218        | 1.0   | 64   | 0.9419          | 0.5742 |
| 0.94          | 2.0   | 128  | 0.9054          | 0.6029 |
| 0.9123        | 3.0   | 192  | 0.9019          | 0.5262 |
| 0.8625        | 4.0   | 256  | 0.8465          | 0.6029 |
| 0.8104        | 5.0   | 320  | 0.7810          | 0.6319 |
| 0.7244        | 6.0   | 384  | 0.7278          | 0.7037 |
| 0.697         | 7.0   | 448  | 0.6300          | 0.7480 |
| 0.5865        | 8.0   | 512  | 0.5659          | 0.7662 |
| 0.5199        | 9.0   | 576  | 0.5445          | 0.7721 |
| 0.4734        | 10.0  | 640  | 0.6750          | 0.7185 |
| 0.4399        | 11.0  | 704  | 0.4893          | 0.8274 |
| 0.3817        | 12.0  | 768  | 0.5578          | 0.7844 |
| 0.3318        | 13.0  | 832  | 0.4699          | 0.8228 |
| 0.3096        | 14.0  | 896  | 0.4460          | 0.8399 |
| 0.2787        | 15.0  | 960  | 0.4105          | 0.8399 |
| 0.2517        | 16.0  | 1024 | 0.3488          | 0.8578 |
| 0.2346        | 17.0  | 1088 | 0.3877          | 0.8773 |
| 0.2286        | 18.0  | 1152 | 0.3420          | 0.8575 |
| 0.1914        | 19.0  | 1216 | 0.4123          | 0.8682 |
| 0.1844        | 20.0  | 1280 | 0.2894          | 0.8913 |
| 0.173         | 21.0  | 1344 | 0.3197          | 0.8887 |
| 0.1687        | 22.0  | 1408 | 0.2626          | 0.9075 |
| 0.1601        | 23.0  | 1472 | 0.2951          | 0.9068 |
| 0.1466        | 24.0  | 1536 | 0.2666          | 0.9049 |
| 0.1468        | 25.0  | 1600 | 0.2136          | 0.9103 |
| 0.1226        | 26.0  | 1664 | 0.2387          | 0.9127 |
| 0.1186        | 27.0  | 1728 | 0.2131          | 0.9271 |
| 0.0951        | 28.0  | 1792 | 0.2520          | 0.9130 |
| 0.1049        | 29.0  | 1856 | 0.2096          | 0.9259 |
| 0.0936        | 30.0  | 1920 | 0.1875          | 0.9309 |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0