Edit model card

e5 cogcache small

This is a sentence-transformers model finetuned from intfloat/multilingual-e5-small. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: intfloat/multilingual-e5-small
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 384 tokens
  • Similarity Function: Cosine Similarity
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("srikarvar/e5-small-cogcachedata-6")
# Run inference
sentences = [
    'How can I improve my Spanish?',
    'How can I improve my English?',
    'How can I lose weight?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Binary Classification

Metric Value
cosine_accuracy 0.9769
cosine_accuracy_threshold 0.8897
cosine_f1 0.9822
cosine_f1_threshold 0.8897
cosine_precision 0.9765
cosine_recall 0.9881
cosine_ap 0.9942
dot_accuracy 0.9769
dot_accuracy_threshold 0.8897
dot_f1 0.9822
dot_f1_threshold 0.8897
dot_precision 0.9765
dot_recall 0.9881
dot_ap 0.9942
manhattan_accuracy 0.9769
manhattan_accuracy_threshold 7.3495
manhattan_f1 0.9822
manhattan_f1_threshold 7.3495
manhattan_precision 0.9765
manhattan_recall 0.9881
manhattan_ap 0.9943
euclidean_accuracy 0.9769
euclidean_accuracy_threshold 0.4697
euclidean_f1 0.9822
euclidean_f1_threshold 0.4697
euclidean_precision 0.9765
euclidean_recall 0.9881
euclidean_ap 0.9942
max_accuracy 0.9769
max_accuracy_threshold 7.3495
max_f1 0.9822
max_f1_threshold 7.3495
max_precision 0.9765
max_recall 0.9881
max_ap 0.9943

Binary Classification

Metric Value
cosine_accuracy 0.9769
cosine_accuracy_threshold 0.8897
cosine_f1 0.9822
cosine_f1_threshold 0.8897
cosine_precision 0.9765
cosine_recall 0.9881
cosine_ap 0.9942
dot_accuracy 0.9769
dot_accuracy_threshold 0.8897
dot_f1 0.9822
dot_f1_threshold 0.8897
dot_precision 0.9765
dot_recall 0.9881
dot_ap 0.9942
manhattan_accuracy 0.9769
manhattan_accuracy_threshold 7.3495
manhattan_f1 0.9822
manhattan_f1_threshold 7.3495
manhattan_precision 0.9765
manhattan_recall 0.9881
manhattan_ap 0.9943
euclidean_accuracy 0.9769
euclidean_accuracy_threshold 0.4697
euclidean_f1 0.9822
euclidean_f1_threshold 0.4697
euclidean_precision 0.9765
euclidean_recall 0.9881
euclidean_ap 0.9942
max_accuracy 0.9769
max_accuracy_threshold 7.3495
max_f1 0.9822
max_f1_threshold 7.3495
max_precision 0.9765
max_recall 0.9881
max_ap 0.9943

Training Details

Training Dataset

Unnamed Dataset

  • Size: 559 training samples
  • Columns: sentence2, label, and sentence1
  • Approximate statistics based on the first 1000 samples:
    sentence2 label sentence1
    type string int string
    details
    • min: 4 tokens
    • mean: 10.07 tokens
    • max: 22 tokens
    • 0: ~44.54%
    • 1: ~55.46%
    • min: 6 tokens
    • mean: 10.45 tokens
    • max: 20 tokens
  • Samples:
    sentence2 label sentence1
    What are the ingredients of a pizza 1 What are the ingredients of a pizza?
    What are the ingredients of pizza 1 What are the ingredients of a pizza?
    What are ingredients of pizza 1 What are the ingredients of a pizza?
  • Loss: OnlineContrastiveLoss

Evaluation Dataset

Unnamed Dataset

  • Size: 130 evaluation samples
  • Columns: sentence2, label, and sentence1
  • Approximate statistics based on the first 1000 samples:
    sentence2 label sentence1
    type string int string
    details
    • min: 5 tokens
    • mean: 11.48 tokens
    • max: 22 tokens
    • 0: ~35.38%
    • 1: ~64.62%
    • min: 6 tokens
    • mean: 10.85 tokens
    • max: 20 tokens
  • Samples:
    sentence2 label sentence1
    What are the ingredients of a pizza 1 What are the ingredients of a pizza?
    What are the ingredients of pizza 1 What are the ingredients of a pizza?
    What are ingredients of pizza 1 What are the ingredients of a pizza?
  • Loss: OnlineContrastiveLoss

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • num_train_epochs: 6
  • warmup_ratio: 0.1
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 6
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step loss e5-cogcache-dev_max_ap quora-duplicates-dev_max_ap
0 0 - - 0.7430
1.0286 36 0.3066 - 0.9122
2.0286 72 0.0949 - 0.9643
3.0286 108 0.0307 - 0.9898
4.0286 144 0.0301 - 0.9916
5.0286 180 0.0291 - 0.9950
5.8571 210 0.0294 0.9943 0.9943

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.2
  • PyTorch: 2.1.2+cu121
  • Accelerate: 0.32.1
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
8
Safetensors
Model size
118M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for srikarvar/e5-small-cogcachedata-6

Finetuned
(55)
this model

Evaluation results