ce-roberta-large / README.md
srmishra's picture
End of training
89cc984 verified
|
raw
history blame
2.3 kB
metadata
license: apache-2.0
base_model: cross-encoder/stsb-roberta-large
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
model-index:
  - name: ce-roberta-large
    results: []

ce-roberta-large

This model is a fine-tuned version of cross-encoder/stsb-roberta-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1713
  • Accuracy: 0.6869
  • Precision: 0.8654
  • Recall: 0.6522

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall
0.7081 1.0 56 0.6788 0.5960 0.8372 0.5217
0.2275 2.0 112 0.2457 0.6667 0.8333 0.6522
0.2263 3.0 168 0.1814 0.5455 0.9286 0.3768
0.2249 4.0 224 0.1833 0.5657 0.9062 0.4203
0.1803 5.0 280 0.1999 0.6768 0.7937 0.7246
0.1708 6.0 336 0.1956 0.6566 0.8302 0.6377
0.2091 7.0 392 0.1789 0.5556 0.9310 0.3913
0.186 8.0 448 0.1845 0.6364 0.9231 0.5217
0.2133 9.0 504 0.1755 0.6162 0.9189 0.4928
0.1982 10.0 560 0.1713 0.6869 0.8654 0.6522

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.2.1
  • Datasets 2.14.6
  • Tokenizers 0.15.1