File size: 15,967 Bytes
e5bdf53 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 |
import argparse
import time
import numpy as np
import torch
import torch.nn as nn
import quant
from gptq import GPTQ, Observer
from utils import find_layers, DEV, set_seed, get_wikitext2, get_ptb, get_c4, get_ptb_new, get_c4_new, get_loaders, export_quant_table, gen_conditions
from texttable import Texttable
def get_neox(model, seqlen=-1):
def skip(*args, **kwargs):
pass
torch.nn.init.kaiming_uniform_ = skip
torch.nn.init.uniform_ = skip
torch.nn.init.normal_ = skip
from transformers import GPTNeoXForCausalLM
model = GPTNeoXForCausalLM.from_pretrained(model, torch_dtype=torch.float16)
model.seqlen = seqlen if seqlen != -1 else model.config.max_position_embeddings
return model
@torch.no_grad()
def neox_sequential(model, dataloader, dev):
print('Starting ...')
use_cache = model.config.use_cache
model.config.use_cache = False
layers = model.gpt_neox.layers
model.gpt_neox.embed_in = model.gpt_neox.embed_in.to(dev)
layers[0] = layers[0].to(dev)
dtype = next(iter(model.parameters())).dtype
inps = torch.zeros((args.nsamples, model.seqlen, model.config.hidden_size), dtype=dtype, device=dev)
cache = {'i': 0, 'attention_mask': None}
class Catcher(nn.Module):
def __init__(self, module):
super().__init__()
self.module = module
def forward(self, inp, **kwargs):
inps[cache['i']] = inp
cache['i'] += 1
cache['attention_mask'] = kwargs['attention_mask']
cache['position_ids'] = kwargs['position_ids']
raise ValueError
layers[0] = Catcher(layers[0])
for batch in dataloader:
try:
model(batch[0].to(dev))
except ValueError:
pass
layers[0] = layers[0].module
layers[0] = layers[0].cpu()
model.gpt_neox.embed_in = model.gpt_neox.embed_in.cpu()
torch.cuda.empty_cache()
outs = torch.zeros_like(inps)
attention_mask = cache['attention_mask']
position_ids = cache['position_ids']
print('Ready.')
quantizers = {}
observer = Observer()
for i in range(len(layers)):
print(f'Quantizing layer {i+1}/{len(layers)}..')
print('+------------------+--------------+------------+-----------+-------+')
print('| name | weight_error | fp_inp_SNR | q_inp_SNR | time |')
print('+==================+==============+============+===========+=======+')
layer = layers[i].to(dev)
full = find_layers(layer)
sequential = [list(full.keys())]
for names in sequential:
subset = {n: full[n] for n in names}
gptq = {}
for name in subset:
gptq[name] = GPTQ(subset[name], observe=False)
gptq[name].quantizer.configure(args.wbits, perchannel=True, sym=args.sym, mse=False)
def add_batch(name):
def tmp(_, inp, out):
gptq[name].add_batch(inp[0].data, out.data)
return tmp
handles = []
for name in subset:
handles.append(subset[name].register_forward_hook(add_batch(name)))
for j in range(args.nsamples):
outs[j] = layer(inps[j].unsqueeze(0), attention_mask=attention_mask, position_ids=position_ids)[0]
for h in handles:
h.remove()
for name in subset:
scale, zero, g_idx, error = gptq[name].fasterquant(percdamp=args.percdamp, groupsize=args.groupsize, actorder=args.act_order, name=name)
quantizers['gpt_neox.layers.%d.%s' % (i, name)] = (gptq[name].quantizer.cpu(), scale.cpu(), zero.cpu(), g_idx.cpu(), args.wbits, args.groupsize)
gptq[name].free()
for j in range(args.nsamples):
outs[j] = layer(inps[j].unsqueeze(0), attention_mask=attention_mask, position_ids=position_ids)[0]
layers[i] = layer.cpu()
del layer
del gptq
torch.cuda.empty_cache()
inps, outs = outs, inps
print('+------------------+--------------+------------+-----------+-------+')
print('\n')
model.config.use_cache = use_cache
return quantizers
@torch.no_grad()
def neox_eval(model, testenc, dev):
print('Evaluating ...')
testenc = testenc.input_ids
nsamples = testenc.numel() // model.seqlen
use_cache = model.config.use_cache
model.config.use_cache = False
layers = model.gpt_neox.layers
model.gpt_neox.embed_in = model.gpt_neox.embed_in.to(dev)
layers[0] = layers[0].to(dev)
dtype = next(iter(model.parameters())).dtype
inps = torch.zeros((nsamples, model.seqlen, model.config.hidden_size), dtype=dtype, device=dev)
cache = {'i': 0, 'attention_mask': None}
class Catcher(nn.Module):
def __init__(self, module):
super().__init__()
self.module = module
def forward(self, inp, **kwargs):
inps[cache['i']] = inp
cache['i'] += 1
cache['attention_mask'] = kwargs['attention_mask']
cache['position_ids'] = kwargs['position_ids']
raise ValueError
layers[0] = Catcher(layers[0])
for i in range(nsamples):
batch = testenc[:, (i * model.seqlen):((i + 1) * model.seqlen)].to(dev)
try:
model(batch)
except ValueError:
pass
layers[0] = layers[0].module
layers[0] = layers[0].cpu()
model.gpt_neox.embed_in = model.gpt_neox.embed_in.cpu()
torch.cuda.empty_cache()
outs = torch.zeros_like(inps)
attention_mask = cache['attention_mask']
position_ids = cache['position_ids']
for i in range(len(layers)):
print(i)
layer = layers[i].to(dev)
if args.nearest:
subset = find_layers(layer)
for name in subset:
quantizer = quant.Quantizer()
quantizer.configure(args.wbits, perchannel=True, sym=args.sym, mse=False)
W = subset[name].weight.data
quantizer.find_params(W, weight=True)
subset[name].weight.data = quantizer.quantize(W).to(next(iter(layer.parameters())).dtype)
for j in range(nsamples):
outs[j] = layer(inps[j].unsqueeze(0), attention_mask=attention_mask, position_ids=position_ids)[0]
layers[i] = layer.cpu()
del layer
torch.cuda.empty_cache()
inps, outs = outs, inps
model.gpt_neox.final_layer_norm = model.gpt_neox.final_layer_norm.to(dev)
model.embed_out = model.embed_out.to(dev)
testenc = testenc.to(dev)
nlls = []
for i in range(nsamples):
hidden_states = inps[i].unsqueeze(0)
hidden_states = model.gpt_neox.final_layer_norm(hidden_states)
lm_logits = model.embed_out(hidden_states)
shift_logits = lm_logits[:, :-1, :].contiguous()
shift_labels = testenc[:, (i * model.seqlen):((i + 1) * model.seqlen)][:, 1:]
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
neg_log_likelihood = loss.float() * model.seqlen
nlls.append(neg_log_likelihood)
ppl = torch.exp(torch.stack(nlls).sum() / (nsamples * model.seqlen))
print(ppl.item())
model.config.use_cache = use_cache
# TODO: perform packing on GPU
def neox_pack(model, quantizers, wbits, groupsize):
layers = find_layers(model)
layers = {n: layers[n] for n in quantizers}
quant.make_quant_linear(model, quantizers, wbits, groupsize)
qlayers = find_layers(model, [quant.QuantLinear])
print('Packing ...')
for name in qlayers:
print(name)
quantizers[name], scale, zero, g_idx, _, _ = quantizers[name]
qlayers[name].pack(layers[name], scale, zero, g_idx)
print('Done.')
return model
def load_quant(model, checkpoint, wbits, groupsize=-1, eval=True, warmup_autotune=True):
from transformers import GPTNeoXConfig, GPTNeoXForCausalLM, modeling_utils
config = GPTNeoXConfig.from_pretrained(model)
def noop(*args, **kwargs):
pass
torch.nn.init.kaiming_uniform_ = noop
torch.nn.init.uniform_ = noop
torch.nn.init.normal_ = noop
torch.set_default_dtype(torch.half)
modeling_utils._init_weights = False
torch.set_default_dtype(torch.half)
model = GPTNeoXForCausalLM(config)
torch.set_default_dtype(torch.float)
if eval:
model = model.eval()
layers = find_layers(model)
for name in ['embed_in','embed_out']:
if name in layers:
del layers[name]
quant.make_quant_linear(model, layers, wbits, groupsize)
del layers
print('Loading model ...')
if checkpoint.endswith('.safetensors'):
from safetensors.torch import load_file as safe_load
model.load_state_dict(safe_load(checkpoint))
else:
model.load_state_dict(torch.load(checkpoint))
if warmup_autotune:
quant.autotune_warmup_linear(model, transpose=not (eval))
model.seqlen = model.config.max_position_embeddings
print('Done.')
return model
def neox_multigpu(model, gpus):
model.gpt_neox.embed_in = model.gpt_neox.embed_in.to(gpus[0])
model.gpt_neox.final_layer_norm = model.gpt_neox.final_layer_norm.to(gpus[-1])
import copy
model.embed_out = copy.deepcopy(model.embed_out).to(gpus[-1])
cache = {'mask': None}
class MoveModule(nn.Module):
def __init__(self, module):
super().__init__()
self.module = module
self.dev = next(iter(self.module.parameters())).device
def forward(self, *inp, **kwargs):
inp = list(inp)
if inp[0].device != self.dev:
inp[0] = inp[0].to(self.dev)
if cache['mask'] is None or cache['mask'].device != self.dev:
cache['mask'] = kwargs['attention_mask'].to(self.dev)
kwargs['attention_mask'] = cache['mask']
tmp = self.module(*inp, **kwargs)
return tmp
layers = model.gpt_neox.layers
pergpu = math.ceil(len(layers) / len(gpus))
for i in range(len(layers)):
layers[i] = MoveModule(layers[i].to(gpus[i // pergpu]))
model.gpus = gpus
def benchmark(model, input_ids, check=False):
input_ids = input_ids.to(model.gpus[0] if hasattr(model, 'gpus') else DEV)
torch.cuda.synchronize()
cache = {'past': None}
def clear_past(i):
def tmp(layer, inp, out):
if cache['past']:
cache['past'][i] = None
return tmp
for i, layer in enumerate(model.gpt_neox.layers):
layer.register_forward_hook(clear_past(i))
print('Benchmarking ...')
if check:
loss = nn.CrossEntropyLoss()
tot = 0.
def sync():
if hasattr(model, 'gpus'):
for gpu in model.gpus:
torch.cuda.synchronize(gpu)
else:
torch.cuda.synchronize()
max_memory = 0
with torch.no_grad():
attention_mask = torch.ones((1, input_ids.numel()), device=DEV)
times = []
for i in range(input_ids.numel()):
tick = time.time()
out = model(input_ids[:, i:i + 1], past_key_values=cache['past'], attention_mask=attention_mask[:, :(i + 1)].reshape((1, -1)))
sync()
times.append(time.time() - tick)
print(i, times[-1])
max_memory = max(max_memory, torch.cuda.memory_allocated() / 1024 / 1024)
if check and i != input_ids.numel() - 1:
tot += loss(out.logits[0].to(DEV), input_ids[:, (i + 1)].to(DEV)).float()
cache['past'] = list(out.past_key_values)
del out
sync()
print('Median:', np.median(times))
if check:
print('PPL:', torch.exp(tot / (input_ids.numel() - 1)).item())
print('max memory(MiB):', max_memory)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('model', type=str, help='llama model to load')
parser.add_argument('dataset', type=str, choices=['wikitext2', 'ptb', 'c4'], help='Where to extract calibration data from.')
parser.add_argument('--seed', type=int, default=0, help='Seed for sampling the calibration data.')
parser.add_argument('--nsamples', type=int, default=128, help='Number of calibration data samples.')
parser.add_argument('--percdamp', type=float, default=.01, help='Percent of the average Hessian diagonal to use for dampening.')
parser.add_argument('--nearest', action='store_true', help='Whether to run the RTN baseline.')
parser.add_argument('--wbits', type=int, default=16, choices=[2, 3, 4, 8, 16], help='bits to use for quantization; use 16 for evaluating base model.')
parser.add_argument('--seqlen', type=int, default=-1, help='seqlen to use for quantization; default uses full seqlen')
parser.add_argument('--trits', action='store_true', help='Whether to use trits for quantization.')
parser.add_argument('--groupsize', type=int, default=-1, help='Groupsize to use for quantization; default uses full row.')
parser.add_argument('--eval', action='store_true', help='evaluate quantized model.')
parser.add_argument('--save', type=str, default='', help='Save quantized checkpoint under this name.')
parser.add_argument('--save_safetensors', type=str, default='', help='Save quantized `.safetensors` checkpoint under this name.')
parser.add_argument('--load', type=str, default='', help='Load quantized model.')
parser.add_argument('--benchmark', type=int, default=0, help='Number of tokens to use for benchmarking.')
parser.add_argument('--check', action='store_true', help='Whether to compute perplexity during benchmarking for verification.')
parser.add_argument('--sym', action='store_true', help='Whether to perform symmetric quantization.')
parser.add_argument('--act-order', action='store_true', help='Whether to apply the activation order GPTQ heuristic')
parser.add_argument('--new-eval', action='store_true', help='Whether to use the new PTB and C4 eval')
args = parser.parse_args()
if type(args.load) is not str:
args.load = args.load.as_posix()
if args.load:
model = load_quant(args.model, args.load, args.wbits, args.groupsize)
else:
model = get_neox(args.model)
model.eval()
dataloader, testloader = get_loaders(args.dataset, nsamples=args.nsamples, seed=args.seed, model=args.model, seqlen=model.seqlen)
if not args.load and args.wbits < 16 and not args.nearest:
tick = time.time()
quantizers = neox_sequential(model, dataloader, DEV)
print(time.time() - tick)
if args.benchmark:
gpus = [torch.device('cuda:%d' % i) for i in range(torch.cuda.device_count())]
if len(gpus) > 1:
neox_multigpu(model, gpus)
else:
model = model.to(DEV)
if args.benchmark:
input_ids = next(iter(dataloader))[0][:, :args.benchmark]
benchmark(model, input_ids, check=args.check)
if args.eval:
datasets = ['wikitext2', 'ptb', 'c4']
if args.new_eval:
datasets = ['wikitext2', 'ptb-new', 'c4-new']
for dataset in datasets:
dataloader, testloader = get_loaders(dataset, seed=args.seed, model=args.model, seqlen=model.seqlen)
print(dataset)
neox_eval(model, testloader, DEV)
if args.save:
neox_pack(model, quantizers, args.wbits, args.groupsize)
torch.save(model.state_dict(), args.save)
if args.save_safetensors:
neox_pack(model, quantizers, args.wbits, args.groupsize)
from safetensors.torch import save_file as safe_save
state_dict = model.state_dict()
state_dict = {k: v.clone().contiguous() for k, v in state_dict.items()}
safe_save(state_dict, args.save_safetensors)
|