File size: 15,967 Bytes
e5bdf53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
import argparse
import time
import numpy as np
import torch
import torch.nn as nn
import quant

from gptq import GPTQ, Observer
from utils import find_layers, DEV, set_seed, get_wikitext2, get_ptb, get_c4, get_ptb_new, get_c4_new, get_loaders, export_quant_table, gen_conditions
from texttable import Texttable


def get_neox(model, seqlen=-1):

    def skip(*args, **kwargs):
        pass

    torch.nn.init.kaiming_uniform_ = skip
    torch.nn.init.uniform_ = skip
    torch.nn.init.normal_ = skip
    from transformers import GPTNeoXForCausalLM
    model = GPTNeoXForCausalLM.from_pretrained(model, torch_dtype=torch.float16)
    model.seqlen = seqlen if seqlen != -1 else model.config.max_position_embeddings
    return model


@torch.no_grad()
def neox_sequential(model, dataloader, dev):
    print('Starting ...')

    use_cache = model.config.use_cache
    model.config.use_cache = False
    layers = model.gpt_neox.layers

    model.gpt_neox.embed_in = model.gpt_neox.embed_in.to(dev)
    layers[0] = layers[0].to(dev)

    dtype = next(iter(model.parameters())).dtype
    inps = torch.zeros((args.nsamples, model.seqlen, model.config.hidden_size), dtype=dtype, device=dev)
    cache = {'i': 0, 'attention_mask': None}

    class Catcher(nn.Module):

        def __init__(self, module):
            super().__init__()
            self.module = module

        def forward(self, inp, **kwargs):
            inps[cache['i']] = inp
            cache['i'] += 1
            cache['attention_mask'] = kwargs['attention_mask']
            cache['position_ids'] = kwargs['position_ids']
            raise ValueError

    layers[0] = Catcher(layers[0])
    for batch in dataloader:
        try:
            model(batch[0].to(dev))
        except ValueError:
            pass
    layers[0] = layers[0].module

    layers[0] = layers[0].cpu()
    model.gpt_neox.embed_in = model.gpt_neox.embed_in.cpu()
    torch.cuda.empty_cache()

    outs = torch.zeros_like(inps)
    attention_mask = cache['attention_mask']
    position_ids = cache['position_ids']

    print('Ready.')

    quantizers = {}
    observer = Observer()
    for i in range(len(layers)):

        print(f'Quantizing layer {i+1}/{len(layers)}..')
        print('+------------------+--------------+------------+-----------+-------+')
        print('|       name       | weight_error | fp_inp_SNR | q_inp_SNR | time  |')
        print('+==================+==============+============+===========+=======+')

        layer = layers[i].to(dev)
        full = find_layers(layer)
        sequential = [list(full.keys())]

        for names in sequential:
            subset = {n: full[n] for n in names}
            gptq = {}
            for name in subset:
                gptq[name] = GPTQ(subset[name], observe=False)
                gptq[name].quantizer.configure(args.wbits, perchannel=True, sym=args.sym, mse=False)

            def add_batch(name):

                def tmp(_, inp, out):
                    gptq[name].add_batch(inp[0].data, out.data)

                return tmp

            handles = []
            for name in subset:
                handles.append(subset[name].register_forward_hook(add_batch(name)))
            for j in range(args.nsamples):
                outs[j] = layer(inps[j].unsqueeze(0), attention_mask=attention_mask, position_ids=position_ids)[0]
            for h in handles:
                h.remove()

            for name in subset:
                scale, zero, g_idx, error = gptq[name].fasterquant(percdamp=args.percdamp, groupsize=args.groupsize, actorder=args.act_order, name=name)
                quantizers['gpt_neox.layers.%d.%s' % (i, name)] = (gptq[name].quantizer.cpu(), scale.cpu(), zero.cpu(), g_idx.cpu(), args.wbits, args.groupsize)
                gptq[name].free()

        for j in range(args.nsamples):
            outs[j] = layer(inps[j].unsqueeze(0), attention_mask=attention_mask, position_ids=position_ids)[0]

        layers[i] = layer.cpu()
        del layer
        del gptq
        torch.cuda.empty_cache()

        inps, outs = outs, inps
        print('+------------------+--------------+------------+-----------+-------+')
        print('\n')
  
    model.config.use_cache = use_cache

    return quantizers


@torch.no_grad()
def neox_eval(model, testenc, dev):
    print('Evaluating ...')

    testenc = testenc.input_ids
    nsamples = testenc.numel() // model.seqlen

    use_cache = model.config.use_cache
    model.config.use_cache = False
    layers = model.gpt_neox.layers

    model.gpt_neox.embed_in = model.gpt_neox.embed_in.to(dev)
    layers[0] = layers[0].to(dev)

    dtype = next(iter(model.parameters())).dtype
    inps = torch.zeros((nsamples, model.seqlen, model.config.hidden_size), dtype=dtype, device=dev)
    cache = {'i': 0, 'attention_mask': None}

    class Catcher(nn.Module):

        def __init__(self, module):
            super().__init__()
            self.module = module

        def forward(self, inp, **kwargs):
            inps[cache['i']] = inp
            cache['i'] += 1
            cache['attention_mask'] = kwargs['attention_mask']
            cache['position_ids'] = kwargs['position_ids']
            raise ValueError

    layers[0] = Catcher(layers[0])
    for i in range(nsamples):
        batch = testenc[:, (i * model.seqlen):((i + 1) * model.seqlen)].to(dev)
        try:
            model(batch)
        except ValueError:
            pass
    layers[0] = layers[0].module

    layers[0] = layers[0].cpu()
    model.gpt_neox.embed_in = model.gpt_neox.embed_in.cpu()
    torch.cuda.empty_cache()

    outs = torch.zeros_like(inps)
    attention_mask = cache['attention_mask']
    position_ids = cache['position_ids']

    for i in range(len(layers)):
        print(i)
        layer = layers[i].to(dev)

        if args.nearest:
            subset = find_layers(layer)
            for name in subset:
                quantizer = quant.Quantizer()
                quantizer.configure(args.wbits, perchannel=True, sym=args.sym, mse=False)
                W = subset[name].weight.data
                quantizer.find_params(W, weight=True)
                subset[name].weight.data = quantizer.quantize(W).to(next(iter(layer.parameters())).dtype)

        for j in range(nsamples):
            outs[j] = layer(inps[j].unsqueeze(0), attention_mask=attention_mask, position_ids=position_ids)[0]
        layers[i] = layer.cpu()
        del layer
        torch.cuda.empty_cache()
        inps, outs = outs, inps

    model.gpt_neox.final_layer_norm = model.gpt_neox.final_layer_norm.to(dev)
    model.embed_out = model.embed_out.to(dev)

    testenc = testenc.to(dev)
    nlls = []
    for i in range(nsamples):
        hidden_states = inps[i].unsqueeze(0)
        hidden_states = model.gpt_neox.final_layer_norm(hidden_states)
        lm_logits = model.embed_out(hidden_states)
        shift_logits = lm_logits[:, :-1, :].contiguous()
        shift_labels = testenc[:, (i * model.seqlen):((i + 1) * model.seqlen)][:, 1:]
        loss_fct = nn.CrossEntropyLoss()
        loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
        neg_log_likelihood = loss.float() * model.seqlen
        nlls.append(neg_log_likelihood)
    ppl = torch.exp(torch.stack(nlls).sum() / (nsamples * model.seqlen))
    print(ppl.item())

    model.config.use_cache = use_cache


# TODO: perform packing on GPU
def neox_pack(model, quantizers, wbits, groupsize):
    layers = find_layers(model)
    layers = {n: layers[n] for n in quantizers}
    quant.make_quant_linear(model, quantizers, wbits, groupsize)
    qlayers = find_layers(model, [quant.QuantLinear])
    print('Packing ...')
    for name in qlayers:
        print(name)
        quantizers[name], scale, zero, g_idx, _, _ = quantizers[name]
        qlayers[name].pack(layers[name], scale, zero, g_idx)
    print('Done.')
    return model


def load_quant(model, checkpoint, wbits, groupsize=-1, eval=True, warmup_autotune=True):
    from transformers import GPTNeoXConfig, GPTNeoXForCausalLM, modeling_utils
    config = GPTNeoXConfig.from_pretrained(model)

    def noop(*args, **kwargs):
        pass

    torch.nn.init.kaiming_uniform_ = noop
    torch.nn.init.uniform_ = noop
    torch.nn.init.normal_ = noop

    torch.set_default_dtype(torch.half)
    modeling_utils._init_weights = False
    torch.set_default_dtype(torch.half)
    model = GPTNeoXForCausalLM(config)
    torch.set_default_dtype(torch.float)
    if eval:
        model = model.eval()
    layers = find_layers(model)
    for name in ['embed_in','embed_out']:
        if name in layers:
            del layers[name]
    quant.make_quant_linear(model, layers, wbits, groupsize)

    del layers

    print('Loading model ...')
    if checkpoint.endswith('.safetensors'):
        from safetensors.torch import load_file as safe_load
        model.load_state_dict(safe_load(checkpoint))
    else:
        model.load_state_dict(torch.load(checkpoint))
        
    if warmup_autotune:
        quant.autotune_warmup_linear(model, transpose=not (eval))
        
    model.seqlen = model.config.max_position_embeddings
    print('Done.')

    return model


def neox_multigpu(model, gpus):
    model.gpt_neox.embed_in  = model.gpt_neox.embed_in.to(gpus[0])
    model.gpt_neox.final_layer_norm = model.gpt_neox.final_layer_norm.to(gpus[-1])
    import copy
    model.embed_out = copy.deepcopy(model.embed_out).to(gpus[-1])

    cache = {'mask': None}

    class MoveModule(nn.Module):

        def __init__(self, module):
            super().__init__()
            self.module = module
            self.dev = next(iter(self.module.parameters())).device

        def forward(self, *inp, **kwargs):
            inp = list(inp)
            if inp[0].device != self.dev:
                inp[0] = inp[0].to(self.dev)
            if cache['mask'] is None or cache['mask'].device != self.dev:
                cache['mask'] = kwargs['attention_mask'].to(self.dev)
            kwargs['attention_mask'] = cache['mask']
            tmp = self.module(*inp, **kwargs)
            return tmp

    layers = model.gpt_neox.layers
    pergpu = math.ceil(len(layers) / len(gpus))
    for i in range(len(layers)):
        layers[i] = MoveModule(layers[i].to(gpus[i // pergpu]))

    model.gpus = gpus


def benchmark(model, input_ids, check=False):
    input_ids = input_ids.to(model.gpus[0] if hasattr(model, 'gpus') else DEV)
    torch.cuda.synchronize()

    cache = {'past': None}

    def clear_past(i):

        def tmp(layer, inp, out):
            if cache['past']:
                cache['past'][i] = None

        return tmp

    for i, layer in enumerate(model.gpt_neox.layers):
        layer.register_forward_hook(clear_past(i))

    print('Benchmarking ...')

    if check:
        loss = nn.CrossEntropyLoss()
        tot = 0.

    def sync():
        if hasattr(model, 'gpus'):
            for gpu in model.gpus:
                torch.cuda.synchronize(gpu)
        else:
            torch.cuda.synchronize()

    max_memory = 0
    with torch.no_grad():
        attention_mask = torch.ones((1, input_ids.numel()), device=DEV)
        times = []
        for i in range(input_ids.numel()):
            tick = time.time()
            out = model(input_ids[:, i:i + 1], past_key_values=cache['past'], attention_mask=attention_mask[:, :(i + 1)].reshape((1, -1)))
            sync()
            times.append(time.time() - tick)
            print(i, times[-1])
            max_memory = max(max_memory, torch.cuda.memory_allocated() / 1024 / 1024)
            if check and i != input_ids.numel() - 1:
                tot += loss(out.logits[0].to(DEV), input_ids[:, (i + 1)].to(DEV)).float()
            cache['past'] = list(out.past_key_values)
            del out
        sync()
        print('Median:', np.median(times))
        if check:
            print('PPL:', torch.exp(tot / (input_ids.numel() - 1)).item())
            print('max memory(MiB):', max_memory)


if __name__ == '__main__':

    parser = argparse.ArgumentParser()

    parser.add_argument('model', type=str, help='llama model to load')
    parser.add_argument('dataset', type=str, choices=['wikitext2', 'ptb', 'c4'], help='Where to extract calibration data from.')
    parser.add_argument('--seed', type=int, default=0, help='Seed for sampling the calibration data.')
    parser.add_argument('--nsamples', type=int, default=128, help='Number of calibration data samples.')
    parser.add_argument('--percdamp', type=float, default=.01, help='Percent of the average Hessian diagonal to use for dampening.')
    parser.add_argument('--nearest', action='store_true', help='Whether to run the RTN baseline.')
    parser.add_argument('--wbits', type=int, default=16, choices=[2, 3, 4, 8, 16], help='bits to use for quantization; use 16 for evaluating base model.')
    parser.add_argument('--seqlen', type=int, default=-1, help='seqlen to use for quantization; default uses full seqlen')
    parser.add_argument('--trits', action='store_true', help='Whether to use trits for quantization.')
    parser.add_argument('--groupsize', type=int, default=-1, help='Groupsize to use for quantization; default uses full row.')
    parser.add_argument('--eval', action='store_true', help='evaluate quantized model.')
    parser.add_argument('--save', type=str, default='', help='Save quantized checkpoint under this name.')
    parser.add_argument('--save_safetensors', type=str, default='', help='Save quantized `.safetensors` checkpoint under this name.')
    parser.add_argument('--load', type=str, default='', help='Load quantized model.')
    parser.add_argument('--benchmark', type=int, default=0, help='Number of tokens to use for benchmarking.')
    parser.add_argument('--check', action='store_true', help='Whether to compute perplexity during benchmarking for verification.')
    parser.add_argument('--sym', action='store_true', help='Whether to perform symmetric quantization.')
    parser.add_argument('--act-order', action='store_true', help='Whether to apply the activation order GPTQ heuristic')
    parser.add_argument('--new-eval', action='store_true', help='Whether to use the new PTB and C4 eval')
    args = parser.parse_args()

    if type(args.load) is not str:
        args.load = args.load.as_posix()

    if args.load:
        model = load_quant(args.model, args.load, args.wbits, args.groupsize)
    else:
        model = get_neox(args.model)
        model.eval()

    dataloader, testloader = get_loaders(args.dataset, nsamples=args.nsamples, seed=args.seed, model=args.model, seqlen=model.seqlen)

    if not args.load and args.wbits < 16 and not args.nearest:
        tick = time.time()
        quantizers = neox_sequential(model, dataloader, DEV)
        print(time.time() - tick)

    if args.benchmark:
        gpus = [torch.device('cuda:%d' % i) for i in range(torch.cuda.device_count())]
        if len(gpus) > 1:
            neox_multigpu(model, gpus)
        else:
            model = model.to(DEV)
        if args.benchmark:
            input_ids = next(iter(dataloader))[0][:, :args.benchmark]
            benchmark(model, input_ids, check=args.check)

    if args.eval:
        datasets = ['wikitext2', 'ptb', 'c4']
        if args.new_eval:
            datasets = ['wikitext2', 'ptb-new', 'c4-new']
        for dataset in datasets:
            dataloader, testloader = get_loaders(dataset, seed=args.seed, model=args.model, seqlen=model.seqlen)
            print(dataset)
            neox_eval(model, testloader, DEV)

    if args.save:
        neox_pack(model, quantizers, args.wbits, args.groupsize)
        torch.save(model.state_dict(), args.save)

    if args.save_safetensors:
        neox_pack(model, quantizers, args.wbits, args.groupsize)
        from safetensors.torch import save_file as safe_save
        state_dict = model.state_dict()
        state_dict = {k: v.clone().contiguous() for k, v in state_dict.items()}
        safe_save(state_dict, args.save_safetensors)