File size: 3,403 Bytes
e418f96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a405859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e418f96
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import torch
import torch.nn as nn
import quant

from gptq import GPTQ
from utils import find_layers, DEV, set_seed, get_wikitext2, get_ptb, get_c4, get_ptb_new, get_c4_new, get_loaders
import transformers
from transformers import AutoTokenizer

class ModelInference:
    def __init__(self, model_name, load=None, wbits=16, groupsize=-1):
        self.model_name = model_name
        self.load = load
        self.wbits = wbits
        self.groupsize = groupsize
        if self.load:
            self.model = self.load_quant(self.model_name, self.load, self.wbits, self.groupsize)
        else:
            self.model = self.get_llama(self.model_name)
            self.model.eval()
        self.model.to(DEV)
        self.tokenizer = AutoTokenizer.from_pretrained(self.model_name, use_fast=False)
        
    def get_llama(model):
    
        def skip(*args, **kwargs):
            pass
    
        torch.nn.init.kaiming_uniform_ = skip
        torch.nn.init.uniform_ = skip
        torch.nn.init.normal_ = skip
        from transformers import LlamaForCausalLM
        model = LlamaForCausalLM.from_pretrained(model, torch_dtype='auto')
        model.seqlen = 2048
        return model

    def load_quant(model, checkpoint, wbits, groupsize=-1, fused_mlp=True, eval=True, warmup_autotune=True):
        from transformers import LlamaConfig, LlamaForCausalLM
        config = LlamaConfig.from_pretrained(model)
    
        def noop(*args, **kwargs):
            pass
    
        torch.nn.init.kaiming_uniform_ = noop
        torch.nn.init.uniform_ = noop
        torch.nn.init.normal_ = noop
    
        torch.set_default_dtype(torch.half)
        transformers.modeling_utils._init_weights = False
        torch.set_default_dtype(torch.half)
        model = LlamaForCausalLM(config)
        torch.set_default_dtype(torch.float)
        if eval:
            model = model.eval()
        layers = find_layers(model)
        for name in ['lm_head']:
            if name in layers:
                del layers[name]
        quant.make_quant_linear(model, layers, wbits, groupsize)
    
        del layers
    
        print('Loading model ...')
        if checkpoint.endswith('.safetensors'):
            from safetensors.torch import load_file as safe_load
            model.load_state_dict(safe_load(checkpoint), strict=False)
        else:
            model.load_state_dict(torch.load(checkpoint), strict=False)
    
        if eval:
            quant.make_quant_attn(model)
            quant.make_quant_norm(model)
            if fused_mlp:
                quant.make_fused_mlp(model)
        if warmup_autotune:
            quant.autotune_warmup_linear(model, transpose=not (eval))
            if eval and fused_mlp:
                quant.autotune_warmup_fused(model)
        model.seqlen = 2048
        print('Done.')
    
        return model

    def generate_text(self, text, min_length=10, max_length=50, top_p=0.95, temperature=0.8):
        input_ids = self.tokenizer.encode(text, return_tensors="pt").to(DEV)

        with torch.no_grad():
            generated_ids = self.model.generate(
                input_ids,
                do_sample=True,
                min_length=min_length,
                max_length=max_length,
                top_p=top_p,
                temperature=temperature,
            )
        return self.tokenizer.decode([el.item() for el in generated_ids[0]])