|
import torch |
|
import torch.nn as nn |
|
|
|
from gptq import GPTQ |
|
import argparse |
|
from utils import find_layers, DEV, set_seed, get_wikitext2, get_ptb, get_c4, get_ptb_new, get_c4_new, get_loaders |
|
import quant |
|
|
|
import transformers |
|
from transformers import AutoTokenizer |
|
from transformers.models.llama.modeling_llama import LlamaModel, LlamaConfig |
|
from transformers.modeling_outputs import BaseModelOutputWithPast |
|
from typing import List, Optional, Tuple, Union |
|
from accelerate import cpu_offload_with_hook, load_checkpoint_in_model |
|
|
|
|
|
class Offload_LlamaModel(LlamaModel): |
|
|
|
def __init__(self, config: LlamaConfig): |
|
super().__init__(config) |
|
|
|
def cpu_offload(self, preload): |
|
hook = None |
|
for cpu_offloaded_model in self.layers[preload:]: |
|
_, hook = cpu_offload_with_hook(cpu_offloaded_model, DEV, prev_module_hook=hook) |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you |
|
provide it. |
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
[What are attention masks?](../glossary#attention-mask) |
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range |
|
`[0, config.n_positions - 1]`. |
|
[What are position IDs?](../glossary#position-ids) |
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of |
|
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of |
|
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the |
|
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. |
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those |
|
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of |
|
all `decoder_input_ids` of shape `(batch_size, sequence_length)`. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding |
|
(see `past_key_values`). |
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. |
|
This is useful if you want more control over how to convert `input_ids` indices into associated vectors |
|
than the model's internal embedding lookup matrix. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors |
|
for more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = (output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
batch_size, seq_length = input_ids.shape |
|
elif inputs_embeds is not None: |
|
batch_size, seq_length, _ = inputs_embeds.shape |
|
else: |
|
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") |
|
seq_length_with_past = seq_length |
|
past_key_values_length = 0 |
|
if past_key_values is not None: |
|
past_key_values_length = past_key_values[0][0].shape[2] |
|
seq_length_with_past = seq_length_with_past + past_key_values_length |
|
|
|
if position_ids is None: |
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
position_ids = torch.arange(past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device) |
|
position_ids = position_ids.unsqueeze(0).view(-1, seq_length) |
|
else: |
|
position_ids = position_ids.view(-1, seq_length).long() |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
|
|
if attention_mask is None: |
|
attention_mask = torch.ones((batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device) |
|
attention_mask = self._prepare_decoder_attention_mask(attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length) |
|
|
|
hidden_states = inputs_embeds |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once("`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...") |
|
use_cache = False |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
next_decoder_cache = () if use_cache else None |
|
|
|
for idx in range(len(self.layers)): |
|
decoder_layer = self.layers[idx] |
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states, ) |
|
|
|
past_key_value = past_key_values[idx] if past_key_values is not None else None |
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
|
def create_custom_forward(module): |
|
|
|
def custom_forward(*inputs): |
|
|
|
return module(*inputs, output_attentions, None) |
|
|
|
return custom_forward |
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(decoder_layer), |
|
hidden_states, |
|
attention_mask, |
|
position_ids, |
|
None, |
|
) |
|
else: |
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if use_cache: |
|
next_decoder_cache += (layer_outputs[2 if output_attentions else 1], ) |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1], ) |
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states, ) |
|
|
|
next_cache = next_decoder_cache if use_cache else None |
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) |
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
) |
|
|
|
|
|
def load_quant(model, checkpoint, wbits, groupsize, pre_layer, fused_mlp=True, warmup_autotune=True): |
|
transformers.models.llama.modeling_llama.LlamaModel = Offload_LlamaModel |
|
from transformers import LlamaConfig, LlamaForCausalLM |
|
config = LlamaConfig.from_pretrained(model) |
|
|
|
def noop(*args, **kwargs): |
|
pass |
|
|
|
torch.nn.init.kaiming_uniform_ = noop |
|
torch.nn.init.uniform_ = noop |
|
torch.nn.init.normal_ = noop |
|
|
|
torch.set_default_dtype(torch.half) |
|
transformers.modeling_utils._init_weights = False |
|
torch.set_default_dtype(torch.half) |
|
model = LlamaForCausalLM(config) |
|
torch.set_default_dtype(torch.float) |
|
model = model.eval() |
|
layers = find_layers(model) |
|
for name in ['lm_head']: |
|
if name in layers: |
|
del layers[name] |
|
quant.make_quant_linear(model, layers, wbits, groupsize) |
|
|
|
print('Loading model ...') |
|
load_checkpoint_in_model(model, checkpoint, dtype='float16') |
|
model.seqlen = 2048 |
|
|
|
if eval: |
|
quant.make_quant_attn(model) |
|
quant.make_quant_norm(model) |
|
if fused_mlp: |
|
quant.make_fused_mlp(model) |
|
|
|
|
|
if warmup_autotune: |
|
quant.autotune_warmup_linear(model) |
|
if fused_mlp: |
|
quant.autotune_warmup_fused(model) |
|
|
|
for i in range(pre_layer): |
|
model.model.layers[i].to(DEV) |
|
model.model.embed_tokens.to(DEV) |
|
model.model.norm.to(DEV) |
|
model.lm_head.to(DEV) |
|
model.model.cpu_offload(pre_layer) |
|
print('Done.') |
|
return model |
|
|
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument('model', type=str, help='llama model to load') |
|
parser.add_argument('--wbits', type=int, default=4, choices=[2, 3, 4, 8], help='#bits to use for quantization') |
|
parser.add_argument('--groupsize', type=int, default=-1, help='Groupsize to use for quantization; default uses full row.') |
|
parser.add_argument('--load', type=str, default='', help='Load quantized model.') |
|
parser.add_argument('--text', type=str, help='input text') |
|
|
|
parser.add_argument('--min_length', type=int, default=10, help='The minimum length of the sequence to be generated.') |
|
|
|
parser.add_argument('--max_length', type=int, default=50, help='The maximum length of the sequence to be generated.') |
|
|
|
parser.add_argument('--top_p', |
|
type=float, |
|
default=0.95, |
|
help='If set to float < 1, only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation.') |
|
|
|
parser.add_argument('--temperature', type=float, default=0.8, help='The value used to module the next token probabilities.') |
|
|
|
parser.add_argument('--pre_layer', type=int, default=50, help='The number of layers to preload') |
|
|
|
args = parser.parse_args() |
|
|
|
if type(args.load) is not str: |
|
args.load = args.load.as_posix() |
|
|
|
model = load_quant(args.model, args.load, args.wbits, args.groupsize, args.pre_layer) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(args.model, use_fast=False) |
|
input_ids = tokenizer.encode(args.text, return_tensors="pt").to(DEV) |
|
|
|
with torch.no_grad(): |
|
generated_ids = model.generate( |
|
input_ids, |
|
do_sample=True, |
|
min_length=args.min_length, |
|
max_length=args.max_length, |
|
top_p=args.top_p, |
|
temperature=args.temperature, |
|
) |
|
print(tokenizer.decode([el.item() for el in generated_ids[0]])) |
|
|